Home
Class 12
MATHS
Let z = a + ib be a complex number su...

Let z = a + ib be a complex number such that `a, b in Q, |z| = 1 , |Z^(2n)-1| =x`. Then `(-1)^(x)` is :

A

positive real number

B

negative real number

C

a complex number not necessarily real

D

can’t decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given complex number \( z = a + ib \) where \( a, b \in \mathbb{Q} \) and \( |z| = 1 \). We also need to find \( |z^{2n} - 1| = x \) and then determine \( (-1)^x \). ### Step-by-Step Solution: 1. **Understanding the Magnitude Condition**: Since \( |z| = 1 \), we have: \[ |z| = \sqrt{a^2 + b^2} = 1 \] This implies: \[ a^2 + b^2 = 1 \] 2. **Expressing \( z \) in Exponential Form**: A complex number on the unit circle can be expressed as: \[ z = e^{i\theta} \] where \( \theta \) is a real number. Thus, we can write: \[ a = \cos(\theta) \quad \text{and} \quad b = \sin(\theta) \] 3. **Calculating \( z^{2n} \)**: We compute \( z^{2n} \): \[ z^{2n} = (e^{i\theta})^{2n} = e^{i(2n\theta)} \] 4. **Finding \( |z^{2n} - 1| \)**: Now we need to calculate \( |z^{2n} - 1| \): \[ |z^{2n} - 1| = |e^{i(2n\theta)} - 1| \] Using the formula for the magnitude of a complex number: \[ |e^{i(2n\theta)} - 1| = \sqrt{(e^{i(2n\theta)} - 1)(e^{-i(2n\theta)} - 1)} = \sqrt{2 - 2\cos(2n\theta)} = 2|\sin(n\theta)| \] Therefore, we have: \[ x = 2|\sin(n\theta)| \] 5. **Evaluating \( (-1)^x \)**: Now we need to evaluate \( (-1)^x \): - If \( x = 2|\sin(n\theta)| \), then \( x \) is a non-negative real number. - If \( |\sin(n\theta)| = 0 \), then \( x = 0 \) and \( (-1)^0 = 1 \). - If \( |\sin(n\theta)| > 0 \), then \( x \) is positive and even, thus \( (-1)^x = 1 \). 6. **Conclusion**: Since \( |\sin(n\theta)| \) can only take values in the range [0, 1], \( x \) will always be a non-negative even number or zero. Therefore: \[ (-1)^x = 1 \] ### Final Answer: \[ (-1)^x = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of complex numbers such that |z| = 1 and z = 1 - 2 bar(z) is

Let z and w be two complex numbers such that |Z|<=1,|w|<=1 and |z+iw|=|z-ibar(w)|=2

Let z = x + iy be a non - zero complex number such that z^(2) = I |z|^(2) , where I = sqrt(-1) then z lies on the :

Let z be a complex number satisfying |z+16|=4|z+1| . Then

The number of complex numbers z such that |z-1|=|z+1|=|z-i| is