Home
Class 12
MATHS
If 0 lt x lt 1 and d/(dx){cos^(-1)((1-x...

If `0 lt x lt 1 ` and `d/(dx){cos^(-1)((1-x)/(1+x))}=1/(f(x){1+f^2(x)})`, then `int(d{f^2(x)})/(f(x)+f^2(x))=`

A

`2ln|1+f^2(x)|+c`

B

`2ln|1+f(x)|+c`

C

`ln|1+f(x)|+c`

D

`ln|1+f^(2) (x)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ \frac{d}{dx} \cos^{-1} \left( \frac{1-x}{1+x} \right) = \frac{1}{f(x)(1+f^2(x))} \] ### Step 2: Simplify the left-hand side Using the identity \(\cos^{-1}(u) = \theta\) implies \(u = \cos(\theta)\), we can express: \[ \cos^{-1} \left( \frac{1-x}{1+x} \right) = \theta \implies \frac{1-x}{1+x} = \cos(\theta) \] This can be rewritten as: \[ \cos(2\theta) = \frac{1-x}{1+x} \] Thus, we can differentiate: \[ \frac{d}{dx} \cos^{-1} \left( \frac{1-x}{1+x} \right) = -\frac{1}{\sqrt{1 - \left( \frac{1-x}{1+x} \right)^2}} \cdot \frac{d}{dx} \left( \frac{1-x}{1+x} \right) \] ### Step 3: Differentiate the right-hand side Next, we differentiate \(\frac{1-x}{1+x}\): \[ \frac{d}{dx} \left( \frac{1-x}{1+x} \right) = \frac{-(1+x) - (1-x)}{(1+x)^2} = \frac{-2}{(1+x)^2} \] ### Step 4: Substitute and simplify Substituting this back, we have: \[ -\frac{1}{\sqrt{1 - \left( \frac{1-x}{1+x} \right)^2}} \cdot \left( \frac{-2}{(1+x)^2} \right) \] This simplifies to: \[ \frac{2}{(1+x)^2 \sqrt{1 - \left( \frac{1-x}{1+x} \right)^2}} \] ### Step 5: Equate the two sides Now we equate this to the right-hand side: \[ \frac{2}{(1+x)^2 \sqrt{1 - \left( \frac{1-x}{1+x} \right)^2}} = \frac{1}{f(x)(1+f^2(x))} \] ### Step 6: Find \(f(x)\) From the above equation, we can deduce that: \[ f(x) = \sqrt{x} \] since \(f^2(x) = x\). ### Step 7: Set up the integral Now we need to evaluate the integral: \[ \int \frac{d f^2(x)}{f(x) + f^2(x)} \] Substituting \(f(x) = \sqrt{x}\), we have: \[ d f^2(x) = d(x) \quad \text{and} \quad f^2(x) = x \] Thus, the integral becomes: \[ \int \frac{dx}{\sqrt{x} + x} \] ### Step 8: Simplify the integral Factoring out \(\sqrt{x}\): \[ \int \frac{dx}{\sqrt{x}(1 + \sqrt{x})} \] ### Step 9: Use substitution Let \(t = \sqrt{x}\), then \(x = t^2\) and \(dx = 2t dt\): \[ \int \frac{2t dt}{t(1+t)} = \int \frac{2 dt}{1+t} \] ### Step 10: Integrate Integrating gives: \[ 2 \ln(1+t) + C \] Substituting back \(t = \sqrt{x}\): \[ 2 \ln(1+\sqrt{x}) + C \] ### Final Answer Thus, the final answer is: \[ 2 \ln(1+\sqrt{x}) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

Differentiate cos^(-1)((1-x^(2))/(1+x^(2))) with respect to x, when x in(0,oo)

Differentiate cos^(-1)((1-x^(2))/(1+x^(2))) with respect to x, when x in(-oo,0)

If f(x)=lim_(n->oo) {2x+4x^3+...+2n x^(2n-1)}, 0 < x< 1 and int f(x) dx = F(x) and F(1/sqrt(2)) = 2, then (i) F(0)=1, (ii) F(1/2)=4/3, (iii) F(0)=-1, (iv) F(-1/2)=4/3