Home
Class 12
MATHS
If x in(0,pi/2) ,then (sin^(-1)(cosx)+co...

If `x in(0,pi/2)` ,then `(sin^(-1)(cosx)+cos^(-1)(sinx))/(tan^(-1)(cotx)+cot^(-1)(tanx))=`

A

`pi//4`

B

`pi//3`

C

`pi//2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sin^{-1}(\cos x) + \cos^{-1}(\sin x)}{\tan^{-1}(\cot x) + \cot^{-1}(\tan x)} \] for \( x \in (0, \frac{\pi}{2}) \), we can use some trigonometric identities. ### Step 1: Simplifying the numerator We know the identity: \[ \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \] for any \( y \) in the range \([0, 1]\). Here, we can apply this identity with \( y = \sin x \) and \( y = \cos x \): \[ \sin^{-1}(\cos x) + \cos^{-1}(\sin x) = \frac{\pi}{2} \] ### Step 2: Simplifying the denominator Similarly, we can use the identity: \[ \tan^{-1}(y) + \cot^{-1}(y) = \frac{\pi}{2} \] for any \( y > 0 \). Here, we can apply this identity with \( y = \tan x \): \[ \tan^{-1}(\cot x) + \cot^{-1}(\tan x) = \frac{\pi}{2} \] ### Step 3: Putting it all together Now substituting these results back into our original expression, we have: \[ \frac{\frac{\pi}{2}}{\frac{\pi}{2}} = 1 \] Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=

(1+cos4x)/(cotx-tanx)

tan^(-1)((cosx+sinx)/(cos x-sinx))

sin {cot^(-1)[tan (cos^(-1)x)]=

sin(cot^(-1)(tan(tan^(-1)x))),x in(0,1]

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

Solve cos^(-1)(cosx)>sin^(-1)(sinx),x in [0,2pi]