Home
Class 12
MATHS
If 1+sum(r=0)^(18){r(r+2)+1}r!"="k! then...

If `1+sum_(r=0)^(18){r(r+2)+1}r!"="k!` then k is ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given by: \[ 1 + \sum_{r=0}^{18} \left( r(r+2) + 1 \right) r! \] We can break this down step by step. ### Step 1: Simplify the summand First, we simplify the expression inside the summation: \[ r(r+2) + 1 = r^2 + 2r + 1 = (r + 1)^2 \] So, we can rewrite the summation as: \[ \sum_{r=0}^{18} (r + 1)^2 r! \] ### Step 2: Rewrite the summation Now, we can express \((r + 1)^2\) in terms of factorials: \[ (r + 1)^2 r! = (r + 1)(r + 1) r! = (r + 1)! (r + 1) \] Thus, the summation becomes: \[ \sum_{r=0}^{18} (r + 1)(r + 1)! \] ### Step 3: Change the index of summation To make it easier, we can change the index of summation by letting \(s = r + 1\). When \(r = 0\), \(s = 1\) and when \(r = 18\), \(s = 19\). Therefore, we rewrite the summation: \[ \sum_{s=1}^{19} s \cdot s! \] ### Step 4: Factor out the summation We can factor out \(s \cdot s!\) as follows: \[ s \cdot s! = (s + 1)! - s! \] Thus, we can rewrite the summation: \[ \sum_{s=1}^{19} ((s + 1)! - s!) \] ### Step 5: Evaluate the telescoping series Now, this is a telescoping series: \[ = (2! - 1!) + (3! - 2!) + (4! - 3!) + \ldots + (20! - 19!) \] Most terms will cancel out, leaving us with: \[ 20! - 1! \] Since \(1! = 1\), we have: \[ 20! - 1 \] ### Step 6: Add 1 to the result Now, we go back to our original expression, which was: \[ 1 + \sum_{r=0}^{18} (r(r+2) + 1) r! = 1 + (20! - 1) = 20! \] ### Step 7: Set the equation equal to \(k!\) We have: \[ 20! = k! \] This implies that \(k = 20\). ### Final Answer Thus, the value of \(k\) is: \[ \boxed{20} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(10)r(r-1)10C_(r)=k.2^(9), then k is equal to- -1

If sum_(r=1)^20(r^2+1)r!=k!20 then sum of all divisors of k of the from 7^n, n epsilin N is (A) 7 (B) 58 (C) 350 (D) none of these

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(n) and sum_(r=0)^(n)(C_(r))/(r+1)=k then the value of k is

If sum_(r=1)^(n)cos^(-1)x_(r)=0, then sum_(r=1)^(n)x_(r) equals to

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

If (1+x+x^(2)+x^(3))^(n)=sum_(r=0)^(3n)b_(r)x^(r) and sum_(r=0)^(3n)b_(r)=k, the n sum_(r=0)^(3n)rb_(r)

Let (1 + x + x^(2))^(100)=sum_(r=0)^(200)a_(r)x^(r) and a=sum_(r=0)^(200)a_(r) , then value of sum_(r=1)^(200)(ra_(r))/(25a) is

sum_(r=0)^(300)a_(r)x^(r)=(1+x+x^(2)+x^(3))^(100) ,If a=sum_(r=0)^(300)a_(r), then sum_(r=0)^(300)ra_(r)