Home
Class 12
MATHS
If f(x) = min(2sinx, 1-cos, 1), " then "...

If `f(x) = min(2sinx, 1-cos, 1), " then " int_0^pif (x) dx = `

A

`sqrt3 - 1 + (5pi)/6`

B

`sqrt3 -1 + (2pi)/3`

C

`1 - sqrt3 + (2pi)/3`

D

`1 - sqrt3 + (5pi)/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_0^{\pi} f(x) \, dx \), where \( f(x) = \min(2\sin x, 1 - \cos x, 1) \). ### Step 1: Identify the functions We have three functions: 1. \( y = 2\sin x \) 2. \( y = 1 - \cos x \) 3. \( y = 1 \) ### Step 2: Find the points of intersection To determine where these functions intersect, we need to set them equal to each other. 1. **Intersection of \( 2\sin x \) and \( 1 - \cos x \)**: \[ 2\sin x = 1 - \cos x \] Rearranging gives: \[ 2\sin x + \cos x = 1 \] This can be solved using numerical or graphical methods. 2. **Intersection of \( 2\sin x \) and \( 1 \)**: \[ 2\sin x = 1 \implies \sin x = \frac{1}{2} \implies x = \frac{\pi}{6}, \frac{5\pi}{6} \] 3. **Intersection of \( 1 - \cos x \) and \( 1 \)**: \[ 1 - \cos x = 1 \implies \cos x = 0 \implies x = \frac{\pi}{2} \] ### Step 3: Analyze the intervals Now we have the critical points \( x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6} \). We will evaluate \( f(x) \) in the intervals: - \( [0, \frac{\pi}{6}] \) - \( [\frac{\pi}{6}, \frac{\pi}{2}] \) - \( [\frac{\pi}{2}, \frac{5\pi}{6}] \) - \( [\frac{5\pi}{6}, \pi] \) ### Step 4: Determine \( f(x) \) in each interval 1. **Interval \( [0, \frac{\pi}{6}] \)**: - Here, \( 2\sin x \) is less than \( 1 - \cos x \) and \( 1 \). - Thus, \( f(x) = 2\sin x \). 2. **Interval \( [\frac{\pi}{6}, \frac{\pi}{2}] \)**: - At \( x = \frac{\pi}{6} \), \( 2\sin x = 1 \). - For \( x \) in this interval, \( 1 - \cos x \) is less than \( 1 \) and \( 2\sin x \) is equal to \( 1 \) at \( x = \frac{\pi}{6} \). - Thus, \( f(x) = 1 - \cos x \). 3. **Interval \( [\frac{\pi}{2}, \frac{5\pi}{6}] \)**: - Here, \( 1 \) is less than both \( 2\sin x \) and \( 1 - \cos x \). - Thus, \( f(x) = 1 \). 4. **Interval \( [\frac{5\pi}{6}, \pi] \)**: - Here, \( 2\sin x \) is less than \( 1 - \cos x \) and \( 1 \). - Thus, \( f(x) = 2\sin x \). ### Step 5: Set up the integral Now we can set up the integral: \[ \int_0^{\pi} f(x) \, dx = \int_0^{\frac{\pi}{6}} 2\sin x \, dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1 - \cos x) \, dx + \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} 1 \, dx + \int_{\frac{5\pi}{6}}^{\pi} 2\sin x \, dx \] ### Step 6: Evaluate the integrals 1. **First integral**: \[ \int_0^{\frac{\pi}{6}} 2\sin x \, dx = -2\cos x \bigg|_0^{\frac{\pi}{6}} = -2\left(\cos\frac{\pi}{6} - \cos 0\right) = -2\left(\frac{\sqrt{3}}{2} - 1\right) = 2 - \sqrt{3} \] 2. **Second integral**: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1 - \cos x) \, dx = \left[x - \sin x\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = \left(\frac{\pi}{2} - 1\right) - \left(\frac{\pi}{6} - \frac{1}{2}\right) = \frac{\pi}{3} - \frac{1}{2} \] 3. **Third integral**: \[ \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} 1 \, dx = \left[x\right]_{\frac{\pi}{2}}^{\frac{5\pi}{6}} = \frac{5\pi}{6} - \frac{\pi}{2} = \frac{5\pi}{6} - \frac{3\pi}{6} = \frac{2\pi}{6} = \frac{\pi}{3} \] 4. **Fourth integral**: \[ \int_{\frac{5\pi}{6}}^{\pi} 2\sin x \, dx = -2\cos x \bigg|_{\frac{5\pi}{6}}^{\pi} = -2\left(-1 - \left(-\frac{\sqrt{3}}{2}\right)\right) = 2\left(1 - \frac{\sqrt{3}}{2}\right) = 2 - \sqrt{3} \] ### Step 7: Combine the results Now we combine all the results: \[ \int_0^{\pi} f(x) \, dx = (2 - \sqrt{3}) + \left(\frac{\pi}{3} - \frac{1}{2}\right) + \frac{\pi}{3} + (2 - \sqrt{3}) \] \[ = 4 - 2\sqrt{3} + \frac{2\pi}{3} - \frac{1}{2} \] \[ = \frac{8 - 1}{2} + \frac{2\pi}{3} - 2\sqrt{3} = \frac{7}{2} + \frac{2\pi}{3} - 2\sqrt{3} \] ### Final Answer Thus, the final result is: \[ \int_0^{\pi} f(x) \, dx = \frac{7}{2} + \frac{2\pi}{3} - 2\sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

int (sinx)/(1-cos x)dx

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is

If f(x)=|(sin x+sin x 2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1)|, then the value of int_0^(pi/2) f(x) dx is

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

int sinx/(1-cos^2x)dx

If f(x)= Min {|x-1|,|x|,|x+1|} "then" int_(-1)^(1)f(x)dx eqals

int_0^1 (cos^-1 x)^2 dx .

if f(x)=|x-1| then int_(0)^(2)f(x)dx is