Home
Class 12
MATHS
If int (2cos x - sinx + lambda)/(cosx +...

If `int (2cos x - sinx + lambda)/(cosx + sin x - 2) dx = A lnabs(cosx + sinx - 2) + Bx + C`. Then, ordered triplet `(A,B,lambda)` is ,

A

`(1/2, 3/2, -1)`

B

`(3/2,1/2,-1)`

C

`(1/2,-1,-3/2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the ordered triplet \((A, B, \lambda)\) such that: \[ \int \frac{2 \cos x - \sin x + \lambda}{\cos x + \sin x - 2} \, dx = A \ln |\cos x + \sin x - 2| + Bx + C \] ### Step 1: Differentiate Both Sides We start by differentiating both sides of the equation. The left-hand side becomes: \[ \frac{2 \cos x - \sin x + \lambda}{\cos x + \sin x - 2} \] The right-hand side, after differentiating, becomes: \[ \frac{A}{\cos x + \sin x - 2} \cdot (\cos x + \sin x - 2)' + B \] Calculating the derivative of \(\cos x + \sin x - 2\): \[ (\cos x + \sin x - 2)' = -\sin x + \cos x \] Thus, the right-hand side becomes: \[ \frac{A(-\sin x + \cos x)}{\cos x + \sin x - 2} + B \] ### Step 2: Set the Two Sides Equal Now we set the two sides equal: \[ \frac{2 \cos x - \sin x + \lambda}{\cos x + \sin x - 2} = \frac{A(-\sin x + \cos x)}{\cos x + \sin x - 2} + B \] ### Step 3: Clear the Denominator Multiplying both sides by \(\cos x + \sin x - 2\): \[ 2 \cos x - \sin x + \lambda = A(-\sin x + \cos x) + B(\cos x + \sin x - 2) \] Expanding the right-hand side: \[ A(-\sin x + \cos x) + B(\cos x + \sin x - 2) = (A + B) \cos x + (B - A) \sin x - 2B \] ### Step 4: Equate Coefficients Now we equate coefficients from both sides: 1. Coefficient of \(\cos x\): \[ 2 = A + B \quad \text{(1)} \] 2. Coefficient of \(\sin x\): \[ -1 = B - A \quad \text{(2)} \] 3. Constant term: \[ \lambda = -2B \quad \text{(3)} \] ### Step 5: Solve the System of Equations From equation (2), we can express \(B\) in terms of \(A\): \[ B = A - 1 \] Substituting \(B\) in equation (1): \[ 2 = A + (A - 1) \implies 2 = 2A - 1 \implies 2A = 3 \implies A = \frac{3}{2} \] Now substituting \(A\) back to find \(B\): \[ B = \frac{3}{2} - 1 = \frac{1}{2} \] Now substituting \(B\) into equation (3) to find \(\lambda\): \[ \lambda = -2 \left(\frac{1}{2}\right) = -1 \] ### Final Result Thus, we have: \[ A = \frac{3}{2}, \quad B = \frac{1}{2}, \quad \lambda = -1 \] The ordered triplet \((A, B, \lambda)\) is: \[ \left(\frac{3}{2}, \frac{1}{2}, -1\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos2x)/(cosx-sinx)dx=

int((2cosx-3sinx)/(3cosx+2sinx))dx

"If " int(2cosx-sinx+lambda)/(cosx+sinx-2)dx=A " In"|cosx+sinx-2|+Bx+C, " then the value of " A+B+|lambda| " is"-.

" (8) "int(cosx-sinx)/(sin x+cos x)dx

int(2cosx-sinx)/(3+2sinx+cosx)dx

int(3 sinx+ 2 cos x)/(3 cosx+2 sin x)dx= ax+b log |3cos x + 2 sin x| +C , then (a ,b)

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

"int(cosx-sinx)/((sin x+cos x))dx