Home
Class 12
MATHS
If y^2 = p(x)," then "2d/(dx) (y^3 (d^2y...

If `y^2 = p(x)," then "2d/(dx) (y^3 (d^2y)/(dx^2))`

A

`p''(x) + p(x)`

B

`p''(x). p'''(x)`

C

`p(x) . p'''(x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( 2 \frac{d}{dx} \left( y^3 \frac{d^2y}{dx^2} \right) \) given that \( y^2 = p(x) \). ### Step-by-step Solution: 1. **Differentiate \( y^2 = p(x) \)**: \[ \frac{d}{dx}(y^2) = \frac{d}{dx}(p(x)) \] Using the chain rule, we have: \[ 2y \frac{dy}{dx} = p'(x) \] 2. **Differentiate again to find \( \frac{d^2y}{dx^2} \)**: Differentiate both sides again: \[ \frac{d}{dx}(2y \frac{dy}{dx}) = \frac{d}{dx}(p'(x)) \] Using the product rule on the left side: \[ 2 \left( \frac{dy}{dx} \frac{dy}{dx} + y \frac{d^2y}{dx^2} \right) = p''(x) \] Simplifying gives: \[ 2\left( \left(\frac{dy}{dx}\right)^2 + y \frac{d^2y}{dx^2} \right) = p''(x) \] 3. **Differentiate \( y^3 \frac{d^2y}{dx^2} \)**: We need to find: \[ \frac{d}{dx} \left( y^3 \frac{d^2y}{dx^2} \right) \] Using the product rule: \[ \frac{d}{dx} \left( y^3 \frac{d^2y}{dx^2} \right) = \frac{d}{dx}(y^3) \cdot \frac{d^2y}{dx^2} + y^3 \cdot \frac{d^3y}{dx^3} \] The derivative of \( y^3 \) is: \[ 3y^2 \frac{dy}{dx} \] Thus, we have: \[ 3y^2 \frac{dy}{dx} \cdot \frac{d^2y}{dx^2} + y^3 \cdot \frac{d^3y}{dx^3} \] 4. **Combine the results**: Now substituting back into our expression: \[ 2 \frac{d}{dx} \left( y^3 \frac{d^2y}{dx^2} \right) = 2 \left( 3y^2 \frac{dy}{dx} \frac{d^2y}{dx^2} + y^3 \frac{d^3y}{dx^3} \right) \] 5. **Substituting \( y^2 = p(x) \)**: From step 1, we know \( y^2 = p(x) \). Therefore: \[ 2 \left( 3p(x) \frac{dy}{dx} \frac{d^2y}{dx^2} + y^3 \frac{d^3y}{dx^3} \right) \] 6. **Final expression**: The final expression can be simplified further if needed, but we can express it in terms of \( p(x) \) and its derivatives: \[ = 6p(x) \frac{dy}{dx} \frac{d^2y}{dx^2} + 2y^3 \frac{d^3y}{dx^3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(2)=P(x), then 2(d)/(dx)(y^(3)(d^(2)(y)/(dx^(2))))

If y^(2)=P(x) is a polynomial of degree 3, then 2((d)/(dx))(y^(3)(d^(2)y)/(dx^(2))) is equal to P^(x)+P'(x) (b) P^(x)P^(x)P(x)P^(x)(d) a constant

If y^(2)=P(x) is polynomial of degree 3, then 2((d)/(dx))(y^(3)*d^(2)(y)/(dx^(2))) is equal to

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

If x=log pandy=(1)/(p), then (a) (d^(2)y)/(dx^(2))-2p=0 (b) (d^(2)y)/(dx^(2))+y=0 (c) (d^(2)y)/(dx^(2))+(dy)/(dx)=0( d) (d^(2)y)/(dx^(2))-(dy)/(dx)=0

If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=