Home
Class 12
MATHS
Let (tan((pi)/(4)+alpha))/(5)=(tan((pi)/...

Let `(tan((pi)/(4)+alpha))/(5)=(tan((pi)/(4)+beta))/(3)=(tan((pi)/(4)+gamma))/(2)` . Then `12sin^(2)(alpha-beta)+15sin^(2)(beta-gamma)-7sin^(2)(gamma-alpha)` is equal to :

A

`-(1)/(2)`

B

`(1)/(2)`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \frac{\tan\left(\frac{\pi}{4} + \alpha\right)}{5} = \frac{\tan\left(\frac{\pi}{4} + \beta\right)}{3} = \frac{\tan\left(\frac{\pi}{4} + \gamma\right)}{2} \] Let us denote this common value as \( k \). Thus, we can write: \[ \tan\left(\frac{\pi}{4} + \alpha\right) = 5k \] \[ \tan\left(\frac{\pi}{4} + \beta\right) = 3k \] \[ \tan\left(\frac{\pi}{4} + \gamma\right) = 2k \] Using the tangent addition formula, we have: \[ \tan\left(\frac{\pi}{4} + x\right) = \frac{1 + \tan x}{1 - \tan x} \] Applying this to our equations: 1. For \( \tan\left(\frac{\pi}{4} + \alpha\right) = 5k \): \[ 5k = \frac{1 + \tan \alpha}{1 - \tan \alpha} \] 2. For \( \tan\left(\frac{\pi}{4} + \beta\right) = 3k \): \[ 3k = \frac{1 + \tan \beta}{1 - \tan \beta} \] 3. For \( \tan\left(\frac{\pi}{4} + \gamma\right) = 2k \): \[ 2k = \frac{1 + \tan \gamma}{1 - \tan \gamma} \] Next, we can solve for \( \tan \alpha \), \( \tan \beta \), and \( \tan \gamma \) in terms of \( k \): From the first equation: \[ 5k(1 - \tan \alpha) = 1 + \tan \alpha \implies 5k - 5k \tan \alpha = 1 + \tan \alpha \] \[ (5k - 1)\tan \alpha = 5k - 1 \implies \tan \alpha = 1 \quad \text{(if \( 5k - 1 \neq 0 \))} \] From the second equation: \[ 3k(1 - \tan \beta) = 1 + \tan \beta \implies 3k - 3k \tan \beta = 1 + \tan \beta \] \[ (3k - 1)\tan \beta = 3k - 1 \implies \tan \beta = 1 \quad \text{(if \( 3k - 1 \neq 0 \))} \] From the third equation: \[ 2k(1 - \tan \gamma) = 1 + \tan \gamma \implies 2k - 2k \tan \gamma = 1 + \tan \gamma \] \[ (2k - 1)\tan \gamma = 2k - 1 \implies \tan \gamma = 1 \quad \text{(if \( 2k - 1 \neq 0 \))} \] Thus, we find that: \[ \tan \alpha = \tan \beta = \tan \gamma = 1 \implies \alpha = \beta = \gamma = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] Now we substitute \( \alpha = \beta = \gamma = \frac{\pi}{4} \) into the expression we need to evaluate: \[ 12\sin^2(\alpha - \beta) + 15\sin^2(\beta - \gamma) - 7\sin^2(\gamma - \alpha) \] Since \( \alpha = \beta = \gamma \): \[ \sin^2(\alpha - \beta) = \sin^2(0) = 0 \] \[ \sin^2(\beta - \gamma) = \sin^2(0) = 0 \] \[ \sin^2(\gamma - \alpha) = \sin^2(0) = 0 \] Thus, the expression simplifies to: \[ 12 \cdot 0 + 15 \cdot 0 - 7 \cdot 0 = 0 \] Therefore, the final answer is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha+beta-gamma=pi , then sin^(2)alpha=sin^(2)beta-sin^(2)gamma is equal to

If alpha + beta + gamma=pi, then the value of sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma is equal to

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

If alpha + beta- gamma= pi , prove that sin^(2)alpha + sin^(2)beta - sin^(2)gamma = 2sin alpha sin beta cos gamma .

If alpha,beta,gamma are three distinct real numbers such than 0