Home
Class 12
MATHS
If range of f(x)=cosx, x in ((-pi)/(3),...

If range of `f(x)=cosx`, `x in ((-pi)/(3),(pi)/(6))` is (a, b) then :

A

`a+b=(3)/(2)`

B

`b-a=1-(sqrt(3))/(2)`

C

`a^(2)+b^(2)=(5)/(6)`

D

`a^(2)+b^(2)=(7)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \cos x \) for \( x \) in the interval \( \left(-\frac{\pi}{3}, \frac{\pi}{6}\right) \), we will follow these steps: ### Step 1: Identify the endpoints of the interval We need to evaluate the function \( f(x) = \cos x \) at the endpoints of the interval \( x = -\frac{\pi}{3} \) and \( x = \frac{\pi}{6} \). ### Step 2: Calculate \( f\left(-\frac{\pi}{3}\right) \) Using the cosine function: \[ f\left(-\frac{\pi}{3}\right) = \cos\left(-\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] ### Step 3: Calculate \( f\left(\frac{\pi}{6}\right) \) Now, we calculate the value at the other endpoint: \[ f\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] ### Step 4: Determine the maximum and minimum values Now we have the values: - At \( x = -\frac{\pi}{3} \), \( f(-\frac{\pi}{3}) = \frac{1}{2} \) - At \( x = \frac{\pi}{6} \), \( f(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} \) ### Step 5: Identify the range The range of \( f(x) \) over the interval \( \left(-\frac{\pi}{3}, \frac{\pi}{6}\right) \) is from the minimum value \( \frac{1}{2} \) to the maximum value \( \frac{\sqrt{3}}{2} \). Thus, the range is: \[ \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \] ### Step 6: Identify \( a \) and \( b \) Here, \( a = \frac{1}{2} \) and \( b = \frac{\sqrt{3}}{2} \). ### Step 7: Calculate \( a + b \) and \( a^2 + b^2 \) 1. \( a + b = \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2} \) 2. \( a^2 + b^2 = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1 \) ### Final Answer The range of \( f(x) \) is \( \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=sin^(3)x in domain [-(pi)/(2),(pi)/(2)] is

The range of f (x) cos "" (pi [x])/(2) is

If f(x)=|cos x-sin x|, find f'((pi)/(6)) and f'((pi)/(3))

If f(x)=|cos x-sin x|, find f'((pi)/(6)) andf '((pi)/(3))

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

If f(x)=|cosx|, then f'((3 pi)/(4)) equal to

f(x)=1+[cosx]x,"in "0ltxle(pi)/(2)

Range of cos(x+(pi)/(6))cos(x-(pi)/(6)) is

Consider the real-valued function satisfying 2f(sin x)+f(cos x)=x .then the (a)domain of f(x) is R (b)domain of f(x)is[-1,1] (c)range of f(x) is [-(2 pi)/(3),(pi)/(3)]( d)range of f(x) is R

Range of 3cos x+5sin(x-(pi)/(6)) is