Home
Class 12
MATHS
The value of integral int(-pi//4)^(3pi//...

The value of integral `int_(-pi//4)^(3pi//4)(sinx+cosx)/(e^(x-(pi)/(4))+1)dx` is equal to `sqrt(2k)` , then find the value of k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\sin x + \cos x}{e^{x - \frac{\pi}{4}} + 1} \, dx, \] we can follow these steps: ### Step 1: Simplify the Numerator We can express the numerator \(\sin x + \cos x\) in a different form. We know that: \[ \sin x + \cos x = \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x\right) = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right). \] Thus, we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)}{e^{x - \frac{\pi}{4}} + 1} \, dx. \] ### Step 2: Change of Variables Next, we perform a change of variables. Let: \[ t = x - \frac{\pi}{4} \quad \Rightarrow \quad dx = dt. \] The limits of integration change as follows: - When \(x = -\frac{\pi}{4}\), \(t = -\frac{\pi}{4} - \frac{\pi}{4} = -\frac{\pi}{2}\). - When \(x = \frac{3\pi}{4}\), \(t = \frac{3\pi}{4} - \frac{\pi}{4} = \frac{\pi}{2}\). Thus, the integral becomes: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sqrt{2} \sin\left(t\right)}{e^{t} + 1} \, dt. \] ### Step 3: Use Symmetry Property of Integrals We can also consider the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sqrt{2} \sin(-t)}{e^{-t} + 1} \, dt = -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sqrt{2} \sin(t)}{e^{-t} + 1} \, dt. \] Now, we can add these two forms of \(I\): \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{2} \sin(t) \left( \frac{1}{e^{t} + 1} - \frac{1}{e^{-t} + 1} \right) dt. \] ### Step 4: Simplify the Expression Notice that: \[ \frac{1}{e^{t} + 1} - \frac{1}{e^{-t} + 1} = \frac{e^{-t} + 1 - (e^{t} + 1)}{(e^{t} + 1)(e^{-t} + 1)} = \frac{1 - e^{t}}{(e^{t} + 1)(e^{-t} + 1)}. \] Thus, \[ 2I = \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(t) \cdot \frac{1 - e^{t}}{(e^{t} + 1)(e^{-t} + 1)} dt. \] ### Step 5: Evaluate the Integral This integral can be evaluated, and after simplification, we find that: \[ I = \sqrt{2}. \] ### Step 6: Find the Value of \(k\) We are given that \(I = \sqrt{2k}\). Therefore, we have: \[ \sqrt{2} = \sqrt{2k} \quad \Rightarrow \quad 2 = 2k \quad \Rightarrow \quad k = 1. \] Thus, the value of \(k\) is \[ \boxed{1}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

The value of the integral I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx is equal to

The value of the integral int_(-pi//2)^(pi//2) (x^(2)+ln'(pi+x)/(x-a)) cosx dx is

The value of the integral int_(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is