Home
Class 12
MATHS
The value of lim(x to oo)(sqrt(3x^(2)+s...

The value of `lim_(x to oo)(sqrt(3x^(2)+sqrt(3x^(2)+sqrt(3x^(2))))-sqrt(3x^(2)))` is ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \left( \sqrt{3x^2 + \sqrt{3x^2 + \sqrt{3x^2}}} - \sqrt{3x^2} \right), \] we will follow these steps: ### Step 1: Rewrite the limit expression We start with the limit expression: \[ \lim_{x \to \infty} \left( \sqrt{3x^2 + \sqrt{3x^2 + \sqrt{3x^2}}} - \sqrt{3x^2} \right). \] ### Step 2: Rationalize the expression To simplify this expression, we will rationalize it. We multiply and divide by the conjugate: \[ \lim_{x \to \infty} \frac{\left( \sqrt{3x^2 + \sqrt{3x^2 + \sqrt{3x^2}}} - \sqrt{3x^2} \right) \left( \sqrt{3x^2 + \sqrt{3x^2 + \sqrt{3x^2}}} + \sqrt{3x^2} \right)}{\sqrt{3x^2 + \sqrt{3x^2 + \sqrt{3x^2}}} + \sqrt{3x^2}}. \] ### Step 3: Simplify the numerator The numerator simplifies as follows: \[ \left( \sqrt{3x^2 + \sqrt{3x^2 + \sqrt{3x^2}}} \right)^2 - \left( \sqrt{3x^2} \right)^2 = \left(3x^2 + \sqrt{3x^2 + \sqrt{3x^2}} - 3x^2\right) = \sqrt{3x^2 + \sqrt{3x^2}}. \] ### Step 4: Substitute back into the limit Now, we have: \[ \lim_{x \to \infty} \frac{\sqrt{3x^2 + \sqrt{3x^2}}}{\sqrt{3x^2 + \sqrt{3x^2 + \sqrt{3x^2}}} + \sqrt{3x^2}}. \] ### Step 5: Factor out \(x\) Next, we factor out \(x^2\) from the square roots: \[ \sqrt{3x^2 + \sqrt{3x^2}} = x \sqrt{3 + \frac{\sqrt{3x^2}}{x^2}} = x \sqrt{3 + \frac{\sqrt{3}}{x}}. \] As \(x \to \infty\), \(\frac{\sqrt{3}}{x} \to 0\), so: \[ \sqrt{3 + \frac{\sqrt{3}}{x}} \to \sqrt{3}. \] ### Step 6: Evaluate the limit Now substituting back, we get: \[ \lim_{x \to \infty} \frac{x \sqrt{3}}{x \left( \sqrt{3} + \sqrt{3} \right)} = \lim_{x \to \infty} \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2}. \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)sqrt(3x)-sqrt(x-5)

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

lim_(x rarr oo)((sqrt(x^(2)+5)-sqrt(x^(2)-3))/(sqrt(x^(2)+3)-sqrt(x^(2)+1)))

lim_(x rarr oo)(sqrt(x)-sqrt(x-3))

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

lim_(x rarr1)(sqrt(x^(2)+8)-sqrt(10-x^(2)))/(sqrt(x^(2)+3)-sqrt(5-x^(2)))=

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1)) equals

lim_(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)

lim_(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)