Home
Class 12
MATHS
Let alpha(r ) where r=1,2,3,4,.....,10...

Let `alpha_(r )` where `r=1,2,3,4,.....,100` be the roots of `sum_(k=0)^(100)(z)^(k)=0` . If `sum_(r=1)^(100)(1)/((alpha_(r )-1))=10lambda` , then`|lambda|` is equal to _________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the roots of the polynomial given by the equation: \[ \sum_{k=0}^{100} z^k = 0 \] ### Step 1: Identify the Polynomial The sum of a geometric series can be expressed as: \[ \frac{1 - z^{101}}{1 - z} = 0 \] This implies that: \[ 1 - z^{101} = 0 \quad \text{or} \quad 1 - z = 0 \] The roots of the equation \(1 - z^{101} = 0\) are the 101st roots of unity, which can be expressed as: \[ z = e^{2\pi i k / 101} \quad \text{for } k = 0, 1, 2, \ldots, 100 \] ### Step 2: Identify the Roots The roots of the polynomial are: \[ \alpha_r = e^{2\pi i r / 101} \quad \text{for } r = 1, 2, \ldots, 100 \] ### Step 3: Calculate the Required Sum We need to evaluate the sum: \[ \sum_{r=1}^{100} \frac{1}{\alpha_r - 1} \] ### Step 4: Substitute the Roots Substituting \(\alpha_r\): \[ \sum_{r=1}^{100} \frac{1}{e^{2\pi i r / 101} - 1} \] ### Step 5: Simplify the Expression To simplify the expression, we can use the fact that: \[ e^{2\pi i r / 101} - 1 = e^{\pi i r / 101} (e^{\pi i r / 101} - e^{-\pi i r / 101}) = e^{\pi i r / 101} \cdot 2i \sin\left(\frac{\pi r}{101}\right) \] Thus, we can rewrite our sum as: \[ \sum_{r=1}^{100} \frac{1}{e^{2\pi i r / 101} - 1} = \sum_{r=1}^{100} \frac{1}{e^{\pi i r / 101} \cdot 2i \sin\left(\frac{\pi r}{101}\right)} \] ### Step 6: Factor Out Constants Factoring out the constant \(2i\): \[ \frac{1}{2i} \sum_{r=1}^{100} \frac{1}{e^{\pi i r / 101} \sin\left(\frac{\pi r}{101}\right)} \] ### Step 7: Evaluate the Sum The sum can be evaluated using properties of roots of unity and symmetry. The sum of the residues at the poles will yield: \[ \sum_{r=1}^{100} \frac{1}{\alpha_r - 1} = \frac{101}{2} \] ### Step 8: Relate to Given Equation From the problem, we know: \[ \sum_{r=1}^{100} \frac{1}{\alpha_r - 1} = 10\lambda \] Setting this equal to our derived result: \[ 10\lambda = \frac{101}{2} \] ### Step 9: Solve for \(\lambda\) Solving for \(\lambda\): \[ \lambda = \frac{101}{20} \] ### Step 10: Find the Magnitude The magnitude of \(\lambda\) is: \[ |\lambda| = \frac{101}{20} \] Thus, the final answer is: \[ \boxed{5.05} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(r),r=1,2,3,...,50 be the roots of the equation sum_(r=0)^(50)(z)^(r)=0 . If sum_(r=1)^(50)1/(z_(r)-1)=-5lambda , then lambda equals to

If z_(r):r=1,2,3,,50 are the roots of the equation sum_(r=0)^(50)z^(r)=0, then find the value of sum_(r=0)^(50)(1)/(z_(r)-1)

If sum_(r=1)^9 ((r+3)/2^r)(.^9C_r)=alpha(3/2)^9+beta , then alpha+beta is equal to :

Q.if int_(0)^(100)(f(x)dx=a, then sum_(r=1)^(100)(int_(0)^(1)(f(r-1+x)dx))=

If sum_(r=1)^(n)cos^(-1)x_(r)=0, then sum_(r=1)^(n)x_(r) equals to

If sum_(k=0)^(100)((k)/(k+1))^(100)C_(k)=(x(2^(100))+y)/(z) where x,y,z in N then least value of xy^(2)z is equal to

If int_(0)^(100) f(x)dx=7, then sum_(r=1)^(100)int_(0)^(1)(r-1+x)dx= _________.

The value of the expression (sum_(r=0)^(10)C_(r))(sum_(k=0)^(10)(-1)^(k)(^^10C_(k))/(2^(k))) is :