Home
Class 12
CHEMISTRY
For the fuel cell reaction 2H(2) (g) + ...

For the fuel cell reaction `2H_(2) (g) + O_(2) (g)n rarr 2H_(2)O(l) , Delta_(f) H_(298)^(@) (H_(2)O,1)= -285.5 kJ` / mol Find the value of `DeltaS_(298)^@and DeltaG_(298)^@` for the given fuel cell reaction?
Given : `O_(2) (g)+4H^(+)(aq) +4e^(-)rarr2H_2O(l)E^@=1.23 V`

A

`-0.322 kJ//K , -474.78 kJ`

B

`-0.635 kJ//K , -463.78 kJ`

C

`3.51 kJ//K , -463.78 kJ`

D

`-0.322 J//K , -474.78 kJ`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \Delta S_{298}^\circ \) and \( \Delta G_{298}^\circ \) for the given fuel cell reaction: \[ 2H_{2}(g) + O_{2}(g) \rightarrow 2H_{2}O(l) \] Given data: - \( \Delta_f H_{298}^\circ (H_{2}O, l) = -285.5 \, \text{kJ/mol} \) - Standard cell potential \( E^\circ = 1.23 \, V \) - Number of electrons transferred \( n = 4 \) ### Step 1: Calculate \( \Delta H_{298}^\circ \) Since the enthalpy change is given for the formation of 1 mole of water, we need to multiply it by 2 for the reaction involving 2 moles of water: \[ \Delta H_{298}^\circ = 2 \times (-285.5 \, \text{kJ/mol}) = -571.0 \, \text{kJ} \] ### Step 2: Calculate \( \Delta G_{298}^\circ \) Using the relationship between Gibbs free energy, enthalpy, and entropy: \[ \Delta G_{298}^\circ = \Delta H_{298}^\circ - T \Delta S_{298}^\circ \] We also know that: \[ \Delta G_{298}^\circ = -nFE^\circ \] Where: - \( F \) is Faraday's constant \( \approx 96500 \, \text{C/mol} \) - \( E^\circ = 1.23 \, V \) Substituting the values: \[ \Delta G_{298}^\circ = -4 \times 96500 \, \text{C/mol} \times 1.23 \, V \] Calculating this gives: \[ \Delta G_{298}^\circ = -474780 \, \text{J} = -474.78 \, \text{kJ} \] ### Step 3: Substitute \( \Delta G_{298}^\circ \) into the equation Now we can substitute \( \Delta G_{298}^\circ \) and \( \Delta H_{298}^\circ \) into the Gibbs free energy equation to find \( \Delta S_{298}^\circ \): \[ -474.78 \, \text{kJ} = -571.0 \, \text{kJ} - 298 \Delta S_{298}^\circ \] Rearranging gives: \[ 298 \Delta S_{298}^\circ = -571.0 \, \text{kJ} + 474.78 \, \text{kJ} \] Calculating the right side: \[ 298 \Delta S_{298}^\circ = -96.22 \, \text{kJ} \] Now, divide by 298 to find \( \Delta S_{298}^\circ \): \[ \Delta S_{298}^\circ = \frac{-96.22 \, \text{kJ}}{298} \approx -0.322 \, \text{kJ/K} = -322 \, \text{J/K} \] ### Final Results - \( \Delta G_{298}^\circ = -474.78 \, \text{kJ} \) - \( \Delta S_{298}^\circ = -0.322 \, \text{kJ/K} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

In the reaction 2H_(2)(g) + O_(2)(g) rarr 2H_(2)O (l), " "Delta H = - xkJ

For the fuel cell reaction 2H_(2)(g) +O_(2)(g) rarr 2H_(2)O(l), Deta_(f)H_(298)^(@) (H_(2)O,l) =- 285.5 kJ//mol What is Delta_(298)^(@) for the given fuel cell reaction? Given: O_(2)(g) +4H^(+)(aQ) +4e^(-) rarr 2H_(2)O(l) E^(@) = 1.23 V

For hydrogen oxygen fuel cell with reaction 2H_(2)(g)+O_(2)(g) rarr 2 H_(2)O(l) DeltaG_(f)^(c-)(H_(2)O)=-237.2kJ mol^(-1) . Hence, EMF of the fuel cell is

For the reaction C_(2)H_(4)(g)+3O_(2)(g) rarr 2CO_(2) (g) +2H_(2)O(l) , Delta E=-1415 kJ . The DeltaH at 27^(@)C is

The reaction 2H_2O(l)rarr2H_2(g)+O_2(g) is an example of

For the reaction : C_(2)H_(5)OH(l)+3O_(2)(g)rarr2CO_(2)(g)+3H_(2)O(g) if Delta U^(@)= -1373 kJ mol^(-1) at 298 K . Calculate Delta H^(@)

H_(2)(g)+(1)/(2)O_(2)(g)rarr2H_(2)O(l), DeltaH =- 286 kJ 2H_(2)(g)+O_(2)(g)rarr2H_(2)O(l)……………kJ(+-?)