Home
Class 12
MATHS
|(x+y+z,-z,-y),(-z,x+y+z,-x),(-y,-x,x+y+...

`|(x+y+z,-z,-y),(-z,x+y+z,-x),(-y,-x,x+y+z)|=2(x+y)(y+z)(z+x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

Prove that |(y+z, x,y),(z+x, z, x),(x+y, y, z)| = (x+y+z)(x-z)^(2) .

Prove that |(x+y,y+z,z+x),(z+x,x+y,y+z),(y+z,z+x,x+y)|=2|(x,y,z),(z,x,y),(y,z,x)|

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Prove that |{:(,x+y+2z,x,y),(,z,y+z+2z,y),(,z,x,z+x+2y):}|=2(x+y+z)^(3) .

Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+z+2y):}|=2(x+y+z)^(3)

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z^2),(x^4,y^4,z^4)|=|(x^2,y^2,z^2),(x^4,y^4,z^4),(x, y, z)|=x y z(x-y)(y-z)(z-x)(x+y+z) .