Home
Class 10
MATHS
If the zeroes of the quadratic polynomia...

If the zeroes of the quadratic polynomial `x^(2) +(a+1)x+b` are 2 and -3, then

Text Solution

Verified by Experts

The correct Answer is:
0 and -7
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 6

    OSWAL PUBLICATION|Exercise Section - B |5 Videos
  • SAMPLE PAPER 6

    OSWAL PUBLICATION|Exercise Section -C|7 Videos
  • SAMPLE PAPER 6

    OSWAL PUBLICATION|Exercise Section -C|7 Videos
  • SAMPLE PAPER 5

    OSWAL PUBLICATION|Exercise Section -C|2 Videos
  • SAMPLE PAPER 7

    OSWAL PUBLICATION|Exercise Section -C|7 Videos

Similar Questions

Explore conceptually related problems

The zeros of the quadratic polynomial x^(2) + 88x + 125 are

The zeroes of the quadratic polynomial x^(2) - 24x + 143 are

The zeroes of the quadratic polynomial x^(2)+99x +127 are

The zeroes of the quadratic polynomial 100x^(2)+50x+99 are

The zeroes of the quadratic polynomial x^(2)+99x+127 are:

Find the zeroes of quadratic polynomial 18x^(2)-2=0

The two zeroes of a quadratic polynomial 3x^(2)+1+4x are :

If -2 and 3 are the zeros of the quadratic polynomial x^(2) + (a+1) x + b then

Q.If 5 and -3 are the zeroes of the quadratic polynomial x^(2)+(a+1)x+b, then find the value of a and b.marks)

Find the zeros of the quadratic polynomial 6x^(2) - 3 - 7x and verify the relationship between the zeros and the coefficients of the polynomial.