Home
Class 10
MATHS
Real Numbers Class 10 CBSE EX 1.2 Q1 (1,...

Real Numbers Class 10 CBSE EX 1.2 Q1 (1,2,3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Class 10 Exercise 10.2 Question 1 | CBSE Class 10 Ex -10.2 Q1 | NCERT | Class 10 Maths Chapter 10

Sets , Nios, Class-12, Ch-1 ,Ex-1.1 ,Q-1

Application Of Trigonometry Class 10 | CBSE Class 10 Height And Distance

If a ,b ,c are real numbers such that 0 < a < 1,0 < b < 1,0 < c < 1,a+b+c=2, then prove that a/(1-a)b/(1-b)c/(1-c)geq8

Suppose a_(1), a_(2) , .... Are real numbers, with a_(1) ne 0 . If a_(1), a_(2), a_(3) , ... Are in A.P., then

If az_(1)+bz_(2)+cz_(3)=0 for complex numbers z_(1),z_(2),z_(3) and real numbers a,b,c then z_(1),z_(2),z_(3) lie on a

For positive real numbers a (a>1) let p_a and q_a , be the maximum and minimum values of log_a(x) , for alt=xlt=2a and if p_a-q_a=1/2 then the value of a is not greater than

Statement-1: If a, b are positive real numbers such that a^(3)+b^(3)=16 , then a+ble4. Statement-2: If a, b are positive real numbers and ngt1 , then (a^(n)+b^(n))/(2)ge((a+b)/(2))^(n)

If p(x),q(x) and r(x) be polynomials of degree one and a_1,a_2,a_3 be real numbers then |(p(a_1), p(a_2),p(a_3)),(q(a_1), q(a_2),q(a_3)),(r(a_1), r(a_2),r(a_3))|= (A) 0 (B) 1 (C) -1 (D) none of these