Home
Class 10
MATHS
Euclid Division Lemma...

Euclid Division Lemma

Promotional Banner

Similar Questions

Explore conceptually related problems

Euclid's Division Lemma

Real Numbers|Fundamental Theorem Of Arithmetic|Euclid's Division Lemma|Irrational Numbers

Classification Of Real Numbers|Euclid's Division Lemma|Questions|Euclid's Division Algorithm|Questions|Summary

Use Euclids division Lemma to show that the cube of any positive integer is either of the form 9m,9m+1 or,9m+8 for some integer m .

Theorem 1.1 (Euclid’s Division Lemma) : Given positive integers a and b, there exist unique integers q and r satisfying a = bq + r, 0 ≤ r leq b.

Real Numbers-Euclid'S Divison Lemma|Real Numbers-Euclid'S Divison Algorithm|Ncert Questions|Omr

Euclid's division Lemma states that for two positive integers a and b, there exist unique integers q and r such that a=bq+r where r must satisfy.

Using Eulids division lemma, show that the cube of any positive integer is of the form 9m , or ( 9m+1) or ( 9m+8) for some integer m.

Apply Euclid's division lemma with number 124 and 24.

Find the HCF of 726 and 275 by using Euclid's division lemma.