Home
Class 6
MATHS
Compare and fill in the box with lt , gt...

Compare and fill in the box with `lt , gt` or =
`18.8 + 3"" (1)/(5) + 7 "" (2)/(3) square 16.2 + 4"" (2)/(7) + 3"" (1)/(8)`

A

=

B

`gt`

C

`lt`

D

Can't be determined

Text Solution

AI Generated Solution

The correct Answer is:
To compare the two expressions given in the question, we will break down each expression step by step and then compare the results. **Step 1: Simplify the first expression** The first expression is: \[ 18.8 + 3 \frac{1}{5} + 7 \frac{2}{3} \] 1. Convert \(18.8\) to a fraction: \[ 18.8 = \frac{188}{10} \] 2. Convert \(3 \frac{1}{5}\) to an improper fraction: \[ 3 \frac{1}{5} = 3 + \frac{1}{5} = \frac{15}{5} + \frac{1}{5} = \frac{16}{5} \] 3. Convert \(7 \frac{2}{3}\) to an improper fraction: \[ 7 \frac{2}{3} = 7 + \frac{2}{3} = \frac{21}{3} + \frac{2}{3} = \frac{23}{3} \] Now, we have: \[ \frac{188}{10} + \frac{16}{5} + \frac{23}{3} \] **Step 2: Find the LCM of the denominators** The denominators are \(10\), \(5\), and \(3\). The LCM of these numbers is \(30\). **Step 3: Convert each fraction to have a common denominator** 1. Convert \(\frac{188}{10}\): \[ \frac{188}{10} = \frac{188 \times 3}{10 \times 3} = \frac{564}{30} \] 2. Convert \(\frac{16}{5}\): \[ \frac{16}{5} = \frac{16 \times 6}{5 \times 6} = \frac{96}{30} \] 3. Convert \(\frac{23}{3}\): \[ \frac{23}{3} = \frac{23 \times 10}{3 \times 10} = \frac{230}{30} \] Now, we can add them: \[ \frac{564}{30} + \frac{96}{30} + \frac{230}{30} = \frac{564 + 96 + 230}{30} = \frac{890}{30} \] **Step 4: Simplify the first expression** Now, we simplify: \[ \frac{890}{30} = \frac{89}{3} \] **Step 5: Simplify the second expression** The second expression is: \[ 16.2 + 4 \frac{2}{7} + 3 \frac{1}{8} \] 1. Convert \(16.2\) to a fraction: \[ 16.2 = \frac{162}{10} \] 2. Convert \(4 \frac{2}{7}\) to an improper fraction: \[ 4 \frac{2}{7} = 4 + \frac{2}{7} = \frac{28}{7} + \frac{2}{7} = \frac{30}{7} \] 3. Convert \(3 \frac{1}{8}\) to an improper fraction: \[ 3 \frac{1}{8} = 3 + \frac{1}{8} = \frac{24}{8} + \frac{1}{8} = \frac{25}{8} \] Now, we have: \[ \frac{162}{10} + \frac{30}{7} + \frac{25}{8} \] **Step 6: Find the LCM of the denominators** The denominators are \(10\), \(7\), and \(8\). The LCM of these numbers is \(280\). **Step 7: Convert each fraction to have a common denominator** 1. Convert \(\frac{162}{10}\): \[ \frac{162}{10} = \frac{162 \times 28}{10 \times 28} = \frac{4536}{280} \] 2. Convert \(\frac{30}{7}\): \[ \frac{30}{7} = \frac{30 \times 40}{7 \times 40} = \frac{1200}{280} \] 3. Convert \(\frac{25}{8}\): \[ \frac{25}{8} = \frac{25 \times 35}{8 \times 35} = \frac{875}{280} \] Now, we can add them: \[ \frac{4536}{280} + \frac{1200}{280} + \frac{875}{280} = \frac{4536 + 1200 + 875}{280} = \frac{6611}{280} \] **Step 8: Compare the two expressions** Now we need to compare: \[ \frac{89}{3} \quad \text{and} \quad \frac{6611}{280} \] **Step 9: Cross-multiply to compare** Cross-multiply: \[ 89 \times 280 \quad \text{and} \quad 6611 \times 3 \] Calculating: 1. \(89 \times 280 = 24920\) 2. \(6611 \times 3 = 19833\) Since \(24920 > 19833\), we conclude: \[ \frac{89}{3} > \frac{6611}{280} \] **Final Answer:** The box should be filled with \(>\). ---
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2017-18 SET - A

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS |15 Videos
  • IMO MODEL TEST PAPER 3

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2017-18 SET - B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos

Similar Questions

Explore conceptually related problems

Compare and fill in the box with lt, gt or =. 18.8 + 3 ( 1)/( 5) + 7 ( 3)/( 5) square 16.2 + 4 ( 7 )/( 25) + 3 ( 1)/( 8)

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)