Home
Class 9
MATHS
Simplify: ([5[8^(1/3) + 27^(1/3)]^(3)]^(...

Simplify: `([5[8^(1/3) + 27^(1/3)]^(3)]^(1/4))/((1^(3) + 2^(3) + 3^(3))^(-3//2))xx(((81)/(16))^(-5/4) xx ((25)/(9))^(-5/2))`

A

`(7912)/(625)`

B

`(6812)/(625)`

C

`(6912)/(625)`

D

`(6812)/(722)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{[5(8^{1/3} + 27^{1/3})^{3}]^{1/4}}{(1^{3} + 2^{3} + 3^{3})^{-3/2}} \times \left(\left(\frac{81}{16}\right)^{-5/4} \times \left(\frac{25}{9}\right)^{-5/2}\right) \] we will follow these steps: ### Step 1: Simplify the numerator First, we simplify the expression inside the brackets in the numerator: \[ 8^{1/3} + 27^{1/3} \] Calculating the cube roots: \[ 8^{1/3} = 2 \quad \text{and} \quad 27^{1/3} = 3 \] Thus, \[ 8^{1/3} + 27^{1/3} = 2 + 3 = 5 \] Now, substituting this back into the numerator: \[ [5(5)]^{3} = [25]^{3} = 15625 \] Now, we take the fourth root: \[ (15625)^{1/4} \] ### Step 2: Calculate \(15625^{1/4}\) To find \(15625^{1/4}\), we can express \(15625\) as \(5^6\): \[ 15625 = 5^6 \implies (5^6)^{1/4} = 5^{6/4} = 5^{3/2} \] ### Step 3: Simplify the denominator Now, we simplify the denominator: \[ 1^{3} + 2^{3} + 3^{3} = 1 + 8 + 27 = 36 \] Thus, we have: \[ (36)^{-3/2} \] Calculating \(36^{-3/2}\): \[ 36^{1/2} = 6 \implies 36^{-3/2} = \frac{1}{6^3} = \frac{1}{216} \] ### Step 4: Simplify the second part of the expression Next, we simplify the second part: \[ \left(\frac{81}{16}\right)^{-5/4} \times \left(\frac{25}{9}\right)^{-5/2} \] Calculating each part separately: 1. For \(\left(\frac{81}{16}\right)^{-5/4}\): \[ \frac{81}{16} = \left(\frac{9}{4}\right)^{2} \implies \left(\frac{9}{4}\right)^{-5/2} = \frac{4^{5/2}}{9^{5/2}} = \frac{32}{243} \] 2. For \(\left(\frac{25}{9}\right)^{-5/2}\): \[ \frac{25}{9} = \left(\frac{5}{3}\right)^{2} \implies \left(\frac{5}{3}\right)^{-5} = \frac{3^{5}}{5^{5}} = \frac{243}{3125} \] Now, multiplying these two results: \[ \frac{32}{243} \times \frac{243}{3125} = \frac{32}{3125} \] ### Step 5: Combine everything Now we combine everything: \[ \frac{5^{3/2}}{(36)^{-3/2}} \times \left(\frac{32}{3125}\right) = 5^{3/2} \times 216 \times \frac{32}{3125} \] ### Step 6: Final simplification Now we can simplify: \[ = \frac{5^{3/2} \times 32 \times 216}{3125} \] Calculating \(3125 = 5^5\), we can simplify: \[ = \frac{32 \times 216}{5^{5 - 3/2}} = \frac{32 \times 216}{5^{7/2}} \] ### Final Answer The final simplified expression is: \[ \frac{6912}{625} \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER SET A 2017

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|10 Videos
  • IMO QUESTION PAPER SET A 2017

    SCIENCE OLYMPIAD FOUNDATION |Exercise ARCHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2020 SET 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER SET A 2019

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos

Similar Questions

Explore conceptually related problems

((81)/(16))^((-3)/(4))times((25)/(9))^((-3)/(2))

Simplify 4^(1/3)xx[2^(1/3)xx3^(1/2)]divide9^(1/4)

Simplify ( i ) (((1)/(3))^(-2)-((1)/(2))^(-3)}-:((1)/(4))^(-2)*( ii) ((5)/(8))^(-7)xx((8)/(5))^(-5)

6.Simplify (1/2)^(-3) times (1/4)^(-3)times (1/5)^(-3)

simplify (i) (1^(3)+2^(3)+3^(3))^(1/2) (ii) (3/5)^(4)(8/5)^(-12)(32/5)^(6) ,(iii) (1/27)^(-2/3) (vi) [((625)^(-1/2)))^(-1/4)]^(2) ,(v) (9^(1/3)xx27^(-1/2))/(3^(1/6)xx3^(-2/3)) (vi) 64^(-1/3)[64^(1/3)-64^(2/3)] (8^(1/3)xx16^(1/3))/(32^(-1/3)

4(1)/(2) xx 4(1)/(3) -8(1)/(3) -: 5(2)/(3) =?

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

Simplify: (1/4 + 1/5)/(1-3/8 xx 3/5)