Home
Class 12
MATHS
Let f(x)= a(0) + a(1) |x| + a(2) |x|^(2)...

Let `f(x)= a_(0) + a_(1) |x| + a_(2) |x|^(2) + a_(3) |x|^(3)`, where `a_(0), a_(1), a_(2), a_(3)` are real constants. Then f(x) is differentiable at x= 0

A

whatever be `a_(0), a_(1), a_(2), a_(3)`

B

for no values of `a_(0), a_(1), a_(2), a_(3)`

C

only if `a_(1)= 0`

D

only if `a_(1)= 0, a_(3)= 0`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = a_(0)x^(n) + a_(1)x^(n-1) + a_(2) x^(n-2) + …. + a_(n-1)x + a_(n) , where a_(0), a_(1), a_(2),...., a_(n) are real numbers. If f(x) is divided by (ax - b), then the remainder is

If f(x)=sum_(n=0)a_(n)|x|^(n), where a_(i) are real constants,then f(x) is

If f(x)=sum_(n=0)a_(n)|x|^(n), where a_(i) are real constants,then f(x) is

Let P(x)=1+a_(1)x+a_(2)x^(2)+a_(3)x^(3) where a_(1),a_(2),a_(3)in I and a_(1)+a_(2)+a_(3) is an even number,then

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+2x+3x^(2) )^(10) = a_(0) + a_(1) x + a_(2) x^(2) +…+a_(20) x^(20) , then

Let (1+x+2x^(2))^(20) = a_(0)+a_(1)x+a_(2)x^(2)+...+a_(40)x^(40) then a_(1)+a_(3)+a_(5)+...+a_(39) is equal to