Home
Class 12
MATHS
Let lim(in rarr 0+) int(in)^(x) (bt cos ...

Let `lim_(in rarr 0+) int_(in)^(x) (bt cos 4t- a sin 4t)/(t^(2)) dt= (a sin 4x)/(x)- 1, (0 lt x lt pi//4)`. Then a and b are given by

A

a= 2, b= 2

B

`a= ""^(1)//4, b=1`

C

`a= -1, b= 4`

D

`a= 2, b= 4`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x) (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin 4x)/(x) "for all" x ne0 , then a and b are given by

If int_(0)^(c)(bt cos4t-a sin4t)/(t^(2))dt=(a sin4x)/(x) for all x=0 then 4+(b)/(a)=...

lim_(x rarr0)(sin(x)/(4))/(x)

lim_(x rarr 0) (int_(0)^(x) t tan(5t)dt)/(x^(3)) is equal to :

lim_ (x rarr0) (int_ (0) ^ (x) sin ^ (2) t cos tdt) / (x ^ (3))

lim_(x rarr0)(sin(x/4))/(x)

Let int_o^x(bt cos 4t - a sin 4t)/t^2 dt = (a sin 4x)/x then a and b are given by 1) a=1/4, b = 1 2)a=2,b=2 3) a= -1, b=4 4)a=2,b=4