Home
Class 12
MATHS
Let f(x)= int(sin x)^(cos x) e^(-t^(2)) ...

Let `f(x)= int_(sin x)^(cos x) e^(-t^(2)) dt`. Then `f'((pi)/(4))` equals

A

`sqrt(""^(1)//e)`

B

`- sqrt(""^(2)//e)`

C

`sqrt(""^(2)//e)`

D

`- sqrt(""^(1)//e)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x)=int_(0)^(x)cos((t^(2)+2t+1)/(5))dt0>x>2 then f(x)

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals