Home
Class 12
MATHS
The solution of cos y (dy)/(dx)= e^(x+ s...

The solution of `cos y (dy)/(dx)= e^(x+ sin y) + x^(2) e^(sin y) " is " f(x) + e^(-sin y) =C` (C is arbitrary real constant) where f(x) is equal to

A

`e^(x) + (1)/(2) x^(3)`

B

`e^(-x) + (1)/(3) x^(3)`

C

`e^(-x) + (1)/(2) x^(3)`

D

`e^(x) + (1)/(3) x^(3)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy) / (dx) = (sin x) / (e ^ (y))

(dy)/(dx)=e^(-y)sin x+e^((x-y))

The solution of (dy)/(dx)=e^(x)(sin^(2)x+sin2x)/(y(2log y+1)) is

(dy)/(dx)=e^(-y)*sin x+e^((x-y))

The solution of (dy) / (dx) + (y cos x + sin y + y) / (sin x + x cos y + x) = 0 is

(x(dy)/(dx) -y ) sin (y /x) =x^(2)e^(x) , y = vx

(dy) / (dx) = (sin x-sin y) (cos x) / (cos y)