Home
Class 12
MATHS
Let a(n) = (1^(2) + 2^(2) + ….n^(2))^(n...

Let `a_(n) = (1^(2) + 2^(2) + ….n^(2))^(n) and b_(n) = n^(n) (n!)`. Then

A

`a_(n) lt b_(n)` for all n

B

`a_(n) gt b_(n)` for all n

C

`a_(n)= b_(n)` for infinitely many n

D

`a_(n) lt b_(n)` if n be even and `a_(n) gt b_(n)` if n be odd

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(n)=[log((7)/(5))]^(n) and b_(n) =log_(5) (a_(n)) AA n in N . Then b_(1),b_(2),b_(3),… are in

If lta_(n)gtandltb_(n)gt be two sequences given by a_(n)=(x)^((1)/(2^(n)))+(y)^((1)/(2^(n))) and b_(n)=(x)^((1)/(2^(n))) -(y)^((1)/(2^n)) for all ninN . Then, a_(1)a_(2)a_(3) . . . . .a_(n) is equal to

Let a_(n) = (1+1/n)^(n) . Then for each n in N

Let n in N . If (1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(n)x^(n) and a_(n)-3,a_(n-2), a_(n-1) are in AP, then :

Write the first five terms of each of the following sequences whose n th terms are: a_(n)=3n+2( ii) a_(n)=(n-2)/(3)a_(n)=3^(n)( iv )a_(n)=(3n-2)/(5)a_(n)=(-1)^(n)*2^(n)( vi) a_(n)=(n(n-2))/(2)a_(n)=n^(2)-n+1 (vii) a_(n)=2n^(2)-3n+1a_(n)=(2n-3)/(6)