Home
Class 12
MATHS
Let f(n)= 2^(n+1), g(n)= 1 + (n+1)2^(n) ...

Let `f(n)= 2^(n+1), g(n)= 1 + (n+1)2^(n)` for all `n in N`. Then

A

`f(n) gt g(n)`

B

`f(n) lt g(n)`

C

f(n) and g(n) are not comparable.

D

`f(n) gt g(n)` if n be even and `f(n) lt g(n)` if n be odd

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N

Let x_(n)=(2^(n)+3^(n))^(1//2n) for all natural number n. Then

Let {a _(n)} _( n -1) ^(oo) be a sequene such that a _(1) = 1, a _(2) = 1 and a _( n+2) = 2 a _( n +1) + a _(n) for all n ge 1. Then the value of 47 sum _( n -1) ^(oo) ( a _(n))/( 2 ^( 3n)) is equal to ____________.

If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n in N , then lim_( n to oo)f(n) is equal to

Let f(x)=x^(2) and g(x)=sin x for all x in R. Then the set of all x satisfying ( fogogo f)(x)=(gogof)(x), where (fog)(x)=f(g(x)) is +-sqrt(n pi),n in{0,1,2,...}+-sqrt(n pi),n in{1,2,...}(pi)/(2)+2n pi,n in{...,-2,-1,0,1,2...}2n pi,n in{...,-2,-1,0,1,2,...}

Prove that ((2n)!)/(2^(2n)(n!)^(2))<=(1)/(sqrt(3n+1)) for all n in N

Let a_(n) = (1+1/n)^(n) . Then for each n in N

If f(n+1)=(1)/(2){f(n)+(9)/(f(n))},n in N and f(n)>0 for all n in N, then find lim_(n rarr oo)f(n)