Home
Class 12
MATHS
Two circles S(1)= px^(2) + py^(2) + 2g'x...

Two circles `S_(1)= px^(2) + py^(2) + 2g'x + 2f'y + d= 0 and S_(2) = x^(2) + y^(2) + 2gx + 2fy + d'= 0` have a common chord PQ. The equation of PQ is

A

`S_(1) - S_(2)= 0`

B

`S_(1) + S_(2)= 0`

C

`S_(1) - pS_(2)= 0`

D

`S_(1) + pS_(2)= 0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If circles x^(2) + y^(2) + 2gx + 2fy + e = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - e =

If circles x^(2) + y^(2) + 2gx + 2fy + c = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - c =

If two circles S_(1)=x^(2)+y^(2)+2gx+2fy+c=0 and S_(2)=x^(2)+y^(2)+2g'x+2f'y+c'=0 to be cut orthogonally then show that : 2gg'+2ff'=c+c'

If (2,-1) lies on x^(2) + y^(2) + 2gx + 2fy + c = 0 , which is concentric with x^(2) + y^(2) + 4x - 6y + 3 = 0 , then c =

Find the parametric representation of circles : (i) x^(2) + y^(2) + 12x - 4y - 1 = 0 (ii) x^(2) + y^(2) + 2gx + 2fy + c = 0 .

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then f'g =fg'.

IF the equation x^(2) + y^(2) + 2gx + 2fy + 1 = 0 represents a pair of lines, then