Home
Class 12
MATHS
The maximum value of f(x) = e^(sin x) + ...

The maximum value of `f(x) = e^(sin x) + e^(cos x), x in R` is

A

2e

B

`2 sqrte`

C

`2e^(1//sqrt2)`

D

`2e^(-1//sqrt2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of f(x)=a sin x +b cos x is

Maximum value of f(x)=6sin^(2)x+8sin x cos x+10 is

Maximum value of f(x)=sin^(3)x+cos^(3)x

Find the maximum and the minimum values of f(x)=sin(sin x) for all x in R, if any.

(sin x) ^ (cos x) + e ^ (3x)

The maximum and minimum values of f(x)= 6 sin x cos x +4cos2x are respectively

Find the maximum value of the function f(x) =sin x + cos x .

If F(x)= e^sin x then F(0)=

Prove that the least value of f(x) = (e^(x) + e^(-x)) is 2