Home
Class 12
MATHS
If x satisfies the inequality log(25)x^(...

If `x` satisfies the inequality `log_(25)x^(2)+(log_(5)x)^(2)lt2`, then `x epsilon`

A

`((1)/(5), 5)`

B

`((1)/(25), 5)`

C

`((1)/(5), (25)`

D

`((1)/(25), 25)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the inequality (log_(2)x)^(2)-|(log_(2)x)-2|>=0

Solve the inequality (log_(2)x)^(2)-|(log_(2)x)-2|>=0

Solve the inequality log _(0.5)|1x|log_(x1)2<=2

Solve the inequality: log_(x-2)(2x-3)>log_(x-2)(24-6x)

Solve the inequality: log_(1//2)(x+1) gt log_(2)(2-x)

If x=(4)/(9) then number of distinct integral values of x satisfying the inequality log_(a)(x^(2)-x+2)>log_(a)(-x^(2)+2x+3) ,is

If x satisfies the inequality log_(x+3)(x^(2)-x)<1 then x may belong to the interval

If x, where 0,1,2 are respectively the values of x satisfying the equation ((log_(5)x))^(2)+(log_(5x)((5)/(x))), then

The number of negative integral values of x satisfying the inequality log_((x+(5)/(2)))((x-5)/(2x-3))^(2)lt 0 is :