Home
Class 12
MATHS
Let f(x)= x^(2) + x sin x- cos x. Then...

Let `f(x)= x^(2) + x sin x- cos x`. Then

A

f(x)= 0 has at least one real root

B

f(x)= 0 has no real root

C

f(x) = 0 has at least one positive root

D

f(x)= 0 has at least one negative root

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=log_(2)(|sin x|+|cos x|). the range of f(x) is :

Let f(x)=cos x sin2x then

If f(x)=2x+[x]+sin x cos x, Then f is:

Let the function f(x)=x^(2)+x+sin x-cos x+log(1+|x|) be defined on the interval [0,1]. Define functions g(x) and h(x) in [-1,0] satisfying g(-x)=-f(x) and h(-x)=f(x)AA x in[0,1]

Let f(x)=cos x sin2x, then

Let the function f(x) = tan^(1-) (sin x + cos x) be defined on [ 0, 2 pi] Then f(x) is

"Let f(x) "=|{:(cos x" " sin x" " cos x),(cos 2x" "sin 2x" "2cos 2x),(cos 3x" "sin 3x" "3cos 3x):}|" Then find the vlue of "f'(0) and f'(pi//2).

"Let f(x) "=|{:(cos x" " sin x" " cos x),(cos 2x" "sin 2x" "2cos 2x),(cos 3x" "sin 3x" "3cos 3x):}|" Then find the vlue of "f'(0) and f'(pi//2).