Home
Class 14
MATHS
If x=5+2sqrt(6), then sqrt(x)-1/(sqrt(x)...

If `x=5+2sqrt(6),` then `sqrt(x)-1/(sqrt(x))` is a. `2sqrt(2)` b. `2sqrt(3)` c. `sqrt(3)+sqrt(2)` d. `sqrt(3)-sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=5+2sqrt(6), then sqrt(x)-(1)/(sqrt(x)) is a.2sqrt(2)b2sqrt(3)c*sqrt(3)+sqrt(2)d*sqrt(3)-sqrt(2)

If x=5+2sqrt(6), then (x-1)/(sqrt(x)) is equal to a.sqrt(2) b.sqrt(3)c.2sqrt(2)d.2sqrt(3)

If x=5+2sqrt(6), then sqrt((x)/(2))-(1)/(sqrt(2x))= (a) 1 (b) 2 (c) 3 (d) 4

The value of sqrt(3-2sqrt(2)) is sqrt(2)-1(b)sqrt(2)+1(c)sqrt(3)-sqrt(2)(d)sqrt(3)+sqrt(2)

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)

If x = 5+2sqrt6 , then the value of (sqrtx +frac(1)(sqrtx)) is (A) 2sqrt2 (B) 3sqrt2 (C ) 2sqrt3 (D) 3sqrt3

(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=2-b sqrt(6) find b

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

Evaluate : Find the value of sqrt( 3 + sqrt(5)) a ) sqrt(3)/2 + 1/sqrt(2) b ) sqrt(3)/2 - 1/2 c ) sqrt(5)/2 - 1/sqrt(2) d ) sqrt(5)/sqrt(2) + 1/sqrt(2)