Home
Class 12
CHEMISTRY
The E^@ values of the following reducti...

The `E^@` values of the following reduction reactions are given `Fe_((aq))^(3+) +e rarr Fe_((aq))^(2+),E^@ = 0.771 V`
`Fe_((aq))^(2+) +2e rarr Fe_((s)) ,E^@ = -0.447 V` What will be the free energy change for the reaction `Fe_((aq))^(3+) +3e^(-) rarrFe_((s)) " " (1 F = 96485 "C mol"^(-1))`

A

`+ 18.51 "kJ mol"^(-1)`

B

`+ 11.87 "kJ mol"^(-1)`

C

`-8.10 "kJ mol"^(-1)`

D

`-10.41 "kJ mol"^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the free energy change (ΔG) for the reaction: \[ \text{Fe}^{3+}_{(aq)} + 3e^- \rightarrow \text{Fe}_{(s)} \] we first need to determine the standard cell potential (E°) for the overall reaction. The standard cell potential can be calculated using the given half-reactions and their standard reduction potentials. ### Step 1: Identify the half-reactions and their standard potentials 1. The first half-reaction is: \[ \text{Fe}^{3+}_{(aq)} + e^- \rightarrow \text{Fe}^{2+}_{(aq)}, \quad E° = 0.771 \, \text{V} \] 2. The second half-reaction is: \[ \text{Fe}^{2+}_{(aq)} + 2e^- \rightarrow \text{Fe}_{(s)}, \quad E° = -0.447 \, \text{V} \] ### Step 2: Combine the half-reactions To find the overall reaction, we need to combine these half-reactions. We will multiply the first half-reaction by 2 to balance the number of electrons: \[ 2 \left( \text{Fe}^{3+}_{(aq)} + e^- \rightarrow \text{Fe}^{2+}_{(aq)} \right) \quad \Rightarrow \quad 2\text{Fe}^{3+}_{(aq)} + 2e^- \rightarrow 2\text{Fe}^{2+}_{(aq)} \] Now we can add this to the second half-reaction: \[ 2\text{Fe}^{3+}_{(aq)} + 2e^- \rightarrow 2\text{Fe}^{2+}_{(aq)} \quad \text{and} \quad \text{Fe}^{2+}_{(aq)} + 2e^- \rightarrow \text{Fe}_{(s)} \] This results in: \[ 2\text{Fe}^{3+}_{(aq)} + 2e^- + \text{Fe}^{2+}_{(aq)} + 2e^- \rightarrow 2\text{Fe}^{2+}_{(aq)} + \text{Fe}_{(s)} \] ### Step 3: Calculate the overall standard cell potential (E°) The overall cell potential (E°) is calculated by subtracting the reduction potential of the anode from the cathode. 1. The cathode (reduction) is: \[ \text{Fe}^{2+}_{(aq)} + 2e^- \rightarrow \text{Fe}_{(s)} \quad E° = -0.447 \, \text{V} \] 2. The anode (oxidation) is: \[ \text{Fe}^{3+}_{(aq)} + e^- \rightarrow \text{Fe}^{2+}_{(aq)} \quad E° = 0.771 \, \text{V} \] To find the overall E° for the reaction: \[ E°_{\text{cell}} = E°_{\text{cathode}} - E°_{\text{anode}} = (-0.447) - (0.771) = -1.218 \, \text{V} \] ### Step 4: Calculate the free energy change (ΔG) The relationship between the standard cell potential and the free energy change is given by the equation: \[ \Delta G° = -nFE° \] where: - n = number of moles of electrons transferred (in this case, n = 3) - F = Faraday's constant (96485 C/mol) - E° = standard cell potential (-1.218 V) Now substituting the values: \[ \Delta G° = -3 \times 96485 \, \text{C/mol} \times (-1.218 \, \text{V}) \] Calculating this gives: \[ \Delta G° = 3 \times 96485 \times 1.218 \approx 352,000 \, \text{J/mol} \quad \text{or} \quad 352 \, \text{kJ/mol} \] ### Final Answer The free energy change for the reaction is approximately: \[ \Delta G° \approx 352 \, \text{kJ/mol} \]

To calculate the free energy change (ΔG) for the reaction: \[ \text{Fe}^{3+}_{(aq)} + 3e^- \rightarrow \text{Fe}_{(s)} \] we first need to determine the standard cell potential (E°) for the overall reaction. The standard cell potential can be calculated using the given half-reactions and their standard reduction potentials. ### Step 1: Identify the half-reactions and their standard potentials ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The standard reduction for the following reactions are : Fe^(3+) + 3e^(-) rarr Fe with E^(@) = - 0.036 V Fe^(2+) + 2e^(-) rarr Fe with E^(@) = - 0.44 V What would be the standard electrode potential for the reaction Fe^(3+) + e^(-) rarr Fe^(2+) ?

Based on the data given below, the correct order of reducing power is: Fe_((aq.))^(3+) + e rarr Fe_((aq.))^(2+), E^(@) = +0.77 V Al_((aq.))^(3+) + 3e rarr Al_((s)), E^(@) = -1.66 V Br_(2(aq.)) + 2e rarr 2Br_((aq.))^(-), E^(@) = +1.08 V

The oxdation potentiasl of following half-cell reactions are given Zn rarr Zn^(2+) + 2e^- , E^o = - 0. 76 V, Fe rarr Fe^(2+) + 2e^(-) , E^@ = 0. 44 V what will be the emf of cell, whose cell -reaction is Fe^(2+) (aq) + Zn(s) -> Zn^(2+) (aq) + Fe .