Home
Class 12
PHYSICS
If f(a-x)=f(x), then evaluate int0^axf(x...

If `f(a-x)=f(x)`, then evaluate `int_0^axf(x)dx`

A

`2a^2int_0^af(x)dx`

B

`aint_0^af(x)dx`

C

`a/2int_0^af(x)dx`

D

`a^2/2cdotint_0^af(x)dx`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^a f(a-x) dx=

If f is an integrable function such that f(2a-x)=f(x), then prove that int_0^(2a)f(x)dx=2int_0^af(x)dx

If int_(0)^(a)f(x)dx=10 ,then Evaluate int_(0)^(a)f(a-x)dx

If int_(0)^(a)f(x)dx=10 ,then Evaluate int_(0)^(a)f(a-x)dx

If f(2a-x)=-f(x), prove that int_0^(2a)f(x)dx=0

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is

Property 7: Let f(x) be a continuous function of x defined on [0;a] such that f(a-x)=f(x) then int_(0)^(a)xf(x)dx=(a)/(2)int_(0)^(a)f(x)dx

f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int_0^(2)f(x)dx

Prove that int_0^a f(x)dx=int_0^af(a-x)dx , hence evaluate int_0^pi(x sin x)/(1+cos^2 x)dx

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=