Home
Class 12
MATHS
Find the distance of the point (1, -2, 9...

Find the distance of the point (1, -2, 9) from the point of intersection of the line `vec(r)= 4hat(i)+ 2hat(j) + 7hat(k) + lamda (3hat(i) + 4hat(j) + 2hat(k))` and the plane `vec(r). (hat(i)- hat(j) +hat(k))= 10`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION PAPER 2022 TERM 2 SET 4

    XII BOARDS PREVIOUS YEAR|Exercise Section -C (Case Study Problem)|2 Videos
  • QUESTION PAPER 2022 TERM 2 SET 4

    XII BOARDS PREVIOUS YEAR|Exercise Section-B|6 Videos
  • QUESTION PAPER 2022 TERM 2 SET 3

    XII BOARDS PREVIOUS YEAR|Exercise SECTION C (CASE-STUDY BASED QUESTION)|1 Videos
  • QUESTION PAPER 2022 TERM 2 SET 5

    XII BOARDS PREVIOUS YEAR|Exercise SECTION C (CASE STUDY PROBLEM)|1 Videos

Similar Questions

Explore conceptually related problems

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

Find the distance of the point (-1,-5,-10) from the point of intersection of the line vec r=2hat i-hat j+2hat k+lambda(3hat i+4hat j+2hat k) and the plane vec r*(hat i-hat j+hat k)=5

Knowledge Check

  • The point of intersection of the lines vec(r) = 7hat(i) + 10 hat(j)+ 13 hat(k) , vec(s) = (2hat(i) + 3hat(j)+4hat(k)) and vec(r) = 3hat(i) + 5hat(j) + 7hat(k) + t(hat(i) + 2hat(j) + 3hat(k)) is

    A
    `hat(i) + hat(j) - hat(k)`
    B
    `2hat(i) - hat(j) + 4hat(k)`
    C
    `hat(i) - hat(j) + hat(k)`
    D
    `hat(i) + hat(j) + hat(k)`
  • The angle between the line r=(hat(i)+2hat(j)-hat(k))+lamda(hat(i)-hat(j)+hat(k)) and the plane r*(2hat(i)-hat(j)+hat(k))=4 is

    A
    0
    B
    `(pi)/(2)`
    C
    `pi`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Find the distance of the point (-1,-5,-10), from the point of intersection of the line vec r=(2hat i-hat j+2k)+lambda(3hat i+4hat j+2hat k) and the plane vec r.(hat i-hat j+hat k)=5

    Find the distance of the point (-1,-5,-10) from the point of intersection of line vec r=2hat i-hat j+2hat k+lambda(3hat i+4hat j+2hat k) and the plane vec r*(hat i-hat j+hat k)=5

    find the distance between (-1,-5,-10) from the point of intersection of the line vec r=2hat i-hat j+2hat k+lambda(3hat i+4hat j+2hat k) and the plane vec r*(hat i-hat j+hat k)=5

    Find the distance of the point with position vector -hat i-5 hat j-10 hat k from the point of intersection of the line vec r=(2 hat i- hat j+2 hat k)+lambda(3 hat i+4 hat j+12 hat k) with the plane vec rdot(( hat i- hat j+ hat k)=5.

    Find the angle between the line: vec(r) = (hat(i) - hat(j) + hat(k) ) + lambda (2 hat(i) - hat(j) + 3 hat(k)) and the plane vec(r). (2 hat(i) + hat(j) - hat(k) ) = 4. Also, find the whether the line is parallel to the plane or not.

    vec(r )=(hat(i) +2hat(j) +hat(k)) + lambda(hat(i)-hat(j) + hat(k)) vec(r )=(2hat(i) -hat(j) -hat(k)) + lambda(2hat(i) + hat(j) +2hat(k))