Home
Class 14
MATHS
Direction: In the given question, read t...

Direction: In the given question, read the given statement and compare the two given quantities on its basis.
`1 gt a gt 0 gt b`
Quantity I. Value of `((a+b)^2-a^2-b^2)/((a+b)^2-(a-b)^2)`
Quantity II. `1/(2(ab^3+ab))`

A

Quantity I `lt` Quantity II

B

Quantity I `ge` Quantity II

C

Quantity I `le` Quantity II

D

Quantity I `gt` Quantity II

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze and simplify both quantities step by step. ### Given: 1. \( 1 > a > 0 > b \) ### Quantity I: We need to evaluate: \[ \frac{(a+b)^2 - a^2 - b^2}{(a+b)^2 - (a-b)^2} \] #### Step 1: Simplify the numerator The numerator is: \[ (a+b)^2 - a^2 - b^2 \] Using the identity \( (x+y)^2 = x^2 + y^2 + 2xy \): \[ = (a^2 + 2ab + b^2) - a^2 - b^2 = 2ab \] #### Step 2: Simplify the denominator The denominator is: \[ (a+b)^2 - (a-b)^2 \] Using the identity \( (x+y)^2 - (x-y)^2 = 4xy \): \[ = (a+b)^2 - (a^2 - 2ab + b^2) = (a^2 + 2ab + b^2) - (a^2 - 2ab + b^2) = 4ab \] #### Step 3: Combine the results Now we can substitute the simplified numerator and denominator back into the expression: \[ \frac{2ab}{4ab} = \frac{1}{2} \] ### Quantity II: We need to evaluate: \[ \frac{1}{2(ab^3 + ab)} \] #### Step 4: Analyze the expression Given that \( b < 0 \), we can see that \( ab \) will be positive (since \( a > 0 \) and \( b < 0 \)), but \( b^3 \) will be negative (since the cube of a negative number is negative). Therefore, \( ab^3 \) will also be negative. #### Step 5: Combine terms in Quantity II Thus: \[ ab^3 + ab < 0 \quad \text{(since \( ab^3 \) is negative and dominates)} \] This means that: \[ 2(ab^3 + ab) < 0 \implies \frac{1}{2(ab^3 + ab)} < 0 \] ### Final Comparison: - Quantity I: \( \frac{1}{2} \) (positive) - Quantity II: \( \frac{1}{2(ab^3 + ab)} \) (negative) Since a positive number is always greater than a negative number, we conclude that: \[ \text{Quantity I} > \text{Quantity II} \] ### Answer: **Quantity I is greater than Quantity II.**
Promotional Banner

Similar Questions

Explore conceptually related problems

In the following question two Quantities i.e., Quantity I and Quantity II are given. You have to determine the relation between Quantity I and Quantity II. ‘a’, ‘b’ and ‘c’ are positive integers. Quantity I: Value of a in ((a+b)^2 - (a-b)^2)/(8ab(a+b)^2) =1 Quantity II: Value of c in ((c+b)^3-(c-b)^3)/(b^2+3c^2)^2= 1/(8b)

If a, b gt 0 , then the least value of (a^(2) - ab + b^(2))/((a + b)^(2)) is ______

If a gt b gt0 then maximum value of (ab(a^2-b^2)sinxcosx)/(a^2sin^2x+b^2cos^2x),x in (0,pi//2) is

If ab gt 0 , then the minimum value of (a+b)((1)/(a)+(1)/(b)) is

the value of log_(a-b)(a^(3)-b^(3))-log_(a-b)(a^(2) +ab + b^(2)) is ______ . (a gt b)

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

factorize the given expression a^2+ab(b+1)+b^3