Home
Class 11
PHYSICS
If vec(A)= 2hat(i)+4hat(j)-5hat(k) then ...

If `vec(A)= 2hat(i)+4hat(j)-5hat(k)` then the direction of cosins of the vector `vec(A)` are

A

`(2)/(sqrt45), (4)/(sqrt45) and (-5)/(sqrt45)`

B

`(1)/(sqrt45), (2)/(sqrt45) and (3)/(sqrt45)`

C

`(4)/(sqrt45), 0 and (4)/(sqrt45)`

D

`(3)/(sqrt45),(2)/(sqrt45) and (5)/(sqrt45)`

Text Solution

Verified by Experts

The correct Answer is:
A

`vec(A)= (A cos alpha) hat(i) + (A cos beta) hat(j) + (A cos gamma) hat(k)= A_(x) hat(i) + A_(y) hat(j) + A_(z) hat(k)`
`cos alpha= (A_(x))/(A) , cos beta= (A_(y))/(A), cos gamma= (A_(z))/(A)`
Since, `vec(A) = 2hat(i) + 4hat(j) - 5hat(k) , |vec(A)|= A= sqrt(2^(2) + 4^(2) + (-5)^(2))= sqrt45`
`cos alpha= (2)/(sqrt45), cos beta= (4)/(sqrt45), cos gamma= (-5)/(sqrt45)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A) = 3 hat(i) + 6 hat(j) - 2hat(k) , the directions of cosines of the vector vec(A) are

Write the direction cosines of the vector vec r=6hat i-2hat j+3hat k

Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j) and vec(c) = 4hat(i) + 4hat(j) - 2hat(k) . The projection of the vector 3vec(a) - 2vec(b) on the vector vec(c) is

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

For given vector,vec a=2hat ij+2hat k and vec b=-hat i+hat j-hat k, find the unit vector in the direction of the vector vec a+vec b .

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :- the sum and the differnce of two vectors vec(A) and vec(B) are ________ and ________ respectively.

3.Find a unit vector in direction parallel to the sum of the vectors vec a=2hat i+4hat j-5hat k and vec b=hat i+2hat j+3hat k find also the direction cosines of this vector.

For given vectors,vec a=2hat i-hat j+2hat k and vec b=-hat i+hat j-hat k find the unit vector in the direction of the vector quad vec a+vec b

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.