Home
Class 11
PHYSICS
Following forces start acting on a parti...

Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously `vec(F)_(1)=-4hat(i)+5hat(j)+5hat(k), vec(F)_(2)=-5hat(i)+8hat(j)+6 hat(k), vec(F)_(3)=-3 hat(i)+4 hat(j)-7hat(k)` and `vec(F)_(4)=12hat(i)-3hat(j)-2hat(k)` then the particle will move-

A

In x - y plane

B

In y - z plane

C

In x – z plane

D

Along x -axis

Text Solution

Verified by Experts

The correct Answer is:
B

`vec(F)_("net") = vec(F)_(1) + vec(F)_(2) + vec(F)_(3) + vec(F)_(4)`
`= (-4 hat(i) - 5hat(j) + 5hat(k))+ (5 hat(i) + 8 hat(j) + 6 hat(k))+ (-3hat(i) + 4hat(j) - 7hat(k))+ (2hat(i)- 3hat(j) - 2hat(k))`
`=4 hat(j) + 2hat(k)` Move in yz plane
Promotional Banner

Similar Questions

Explore conceptually related problems

Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously vec(F)_(1)= -4hat(i)-5hat(j)+5hat(k), vec(F)_(2)= 5hat(i)+8hat(j)+6hat(k), vec(F)_(3)= -3hat(i)+4hat(j)-7hat(k) and vec(F)_(4)= 2hat(i)-3hat(k) then the particle will move

Following forces start acting on a particle at rest at the origin of the co-ordinate system overset(rarr)F_(1)=-4 hat I -5 hat j +5hat k , overset(rarr)F_(2)=5hat I +8 hat j +6hat k , overset(rarr)F_(3)=-3hat I + 4 hat j - 7 hat k and overset(rarr)F_(4)=2hat i - 3 hat j - 2 hat k then the particle will move

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Find the sum of the vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) , and vec(c )=hat(i)-6hat(j)-7hat(k) .

If vec(A)=-2hat(i)+3hat(j)-4hat(k)and vec(B)=3hat(i)-4hat(j)+5hat(k) then vec(A)xxvec(B) is

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .