Home
Class 11
PHYSICS
vec(A) and vec(B) are two vectors given ...

`vec(A) and vec(B)` are two vectors given by `vec(A)= 2hat(i)+ 3hat(j) and vec(B)= hat(i)+ hat(j)`. The magnitude of the component of `vec(A)` along `vec(B)` is

A

`(5)/(sqrt2)`

B

`(3)/(sqrt2)`

C

`(7)/(sqrt2)`

D

`(1)/(sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Component of `vec(A)` along `vec(B)= (vec(A).vec(B))/(|vec(B)|)`
`rArr ((2hat(i) + 3hat(j)).(hat(i) + hat(j)))/(sqrt(1^(2) + 1^(2)))= (2+3)/(sqrt2)= (5)/(sqrt2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Given vec(A) = 3hat(i) + 2hat(j) and vec(B) = hat(i) + hat(j). The component of vector vec(A) along vector vec(B) is

If vec(A) = 3 hat(i) - 4 hat(j) and vec(B) = 2 hat(i) + 16 hat(j) then the magnitude and direction of vec(A) + vec(B) will be

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(A)=2hat(i)+hat(j) and vec(B)=hat(i)-hat(j) , sketch vector graphically and find the component of vec(A) along vec(B) and perpendicular to vec(B)

If vec(b)=3hat(i)+4hat(j) and vec(a)=hat(i)-hat(j) the vector having the same magnitude as that of vec(b) and parallel to vec(a) is

If vec(A) and vec(B) are perpendicular Vectors and vector vec(A)= 5hat(i)+7hat(j)-3hat(k) and vec(B)= 2hat(i)+2hat(j)-ahat(k) . The value of a is

If vec(A)=2hat(i)+6hat(j)and vec(B)=4hat(i)+3hat(j), the vector having the same magnitude as vec(B) and parallel to vec(A) is

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec a=4hat i+6hat j and vec b=3hat j+hat k, then the component of vec a along vec b is