Home
Class 11
PHYSICS
For any two vectors A and B, if vec(A).v...

For any two vectors A and B, if `vec(A).vec(B) = |vec(A) xx vec(B)|`, the magnitude of `vec(C ) = vec(A) + vec(B)` is equal to :

A

`sqrt(A^(2) + B^(2))`

B

`A+ B`

C

`sqrt(A^(2) + B^(2) + (AB)/(sqrt2))`

D

`sqrt(A^(2) + B^(2) + sqrt2 xx AB)`

Text Solution

Verified by Experts

The correct Answer is:
D

`vec(A).vec(B)= |vec(A) xx vec(B)|`
`rArr AB cos theta = AB sin theta rArr tan theta=1 rArr theta= 45^(@)`
`|vec(C)|= sqrt(A^(2) + B^(2) + 2AB cos 45^(@))= sqrt(A^(2) + B^(2) + 2AB xx (1)/(sqrt2))`
`|vec(C)| = sqrt(A^(2) + B^(2) + sqrt2AB)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a).vec(b)=|vec(a)xx vec(b)| , then angle between vector vec(a) and vector vec(b) is :

Two vectors vec(A) and vec(B) have magnitudes 2 and 2sqrt(2) respectively. It is found that vec(A).vec(B) = |vec(A) xx vec(B)| , then the value of |(vec(A)+vec(B))/(vec(A)-vec(B))| will be :

If vec(b) and vec(c) are two non-collinear vectors such that vec(a) || (vec(b) xx vec(c)) , then (vec(a) xx vec(b)).(vec(a) xx vec(c)) is equal to

Two vector vec(A) and vec(B) have equal magnitudes. Then the vector vec(A) + vec(B) is perpendicular :

If vec A and vec B are two vectors satisfying the relation vec A cdot vec B = |vec A xx vec B| . Then the value of |vec A - vec B| will be :

For any three vectors vec(A), vec(B) and vec(C) prove that vec(A) xx (vec(B) +vec(C)) +vec(B) xx (vec(C) +vec(A)) + vec(C) xx (vec(A) +vec(B)) = vec(O)

For any two vectors vec a, vec b | vec a * vec b | <= | vec a || vec b |

Let vec(a), vec(b), vec(c) be three vectors mutually perpendicular to each other and have same magnitude. If a vector vec(r) satisfies vec(a) xx {(vec(r) - vec(b)) xx vec(a)} + vec(b) xx {(vec(r) - vec(c)) xx vec(b)} + vec(c) xx {(vec(r) - vec(a)) xx vec(c)} = vec(0) , then vec(r) is equal to :

Prove that for any two vectors vec(a) and vec(b), vec(a).(vec(a)xx vec(b))=0 . Is vec(b).(vec(a)xx vec(b))=0 ?

For any two vectors vec a and vec b write then |vec a+vec b|=|vec a|+|vec b| holds.