Home
Class 11
PHYSICS
If vec(a), vec(b), vec(c) are three unit...

If `vec(a), vec(b), vec(c)` are three unit vectors such that `vec(a)+ vec(b)+vec(c)= 0`, then `vec(a).vec(b) + vec(b).vec(c) + vec(c).vec(a)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the information given: 1. **Given**: Three unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) such that: \[ \vec{a} + \vec{b} + \vec{c} = 0 \] 2. **Objective**: Find the value of: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \] ### Step-by-Step Solution: **Step 1**: Start from the equation \(\vec{a} + \vec{b} + \vec{c} = 0\). Since \(\vec{c} = -(\vec{a} + \vec{b})\), we can substitute \(\vec{c}\) in our dot product expression. **Step 2**: Take the dot product of both sides of the equation \(\vec{a} + \vec{b} + \vec{c} = 0\) with itself: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] **Step 3**: Expand the left-hand side: \[ \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] **Step 4**: Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are unit vectors, we know: \[ \vec{a} \cdot \vec{a} = 1, \quad \vec{b} \cdot \vec{b} = 1, \quad \vec{c} \cdot \vec{c} = 1 \] Thus, we can substitute these values: \[ 1 + 1 + 1 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] **Step 5**: Simplify the equation: \[ 3 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] **Step 6**: Rearranging gives: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -3 \] **Step 7**: Divide by 2 to isolate the dot product sum: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{3}{2} \] ### Final Answer: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -1.5 \]

To solve the problem, we start with the information given: 1. **Given**: Three unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) such that: \[ \vec{a} + \vec{b} + \vec{c} = 0 \] 2. **Objective**: Find the value of: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a), vec(b) and vec(c) are unit vectors such that vec(a)+2vec(b)+2vec(c)=0 then |vec(a)timesvec(c)| is equal to

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

If vec(a),vec(b),vec(c) are three non-coplanar unit vector such that [vec(a),vec(b),vec(c)]=3 then [ vec(a) times vec(b), vec(b) times vec (c),vec(c) times vec(a) ] equals

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)xx vec(b)=vec(c ), vec(b)xx vec(c )=vec(a) , prove that vec(a), vec(b), vec(c ) are mutually at right angles and |vec(b)|=1, |vec(c )|=|vec(a)| .

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is the angle between vec(a) and vec(b) ?

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If vec(a),vec(b) and vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=2,|vec(b)|=3 and |vec(c )|=5 , then the value of vec(a)*vec(b)+vec(b)*vec(c)+vec(c)*vec(a) is

If vec a,vec b,vec c are three vectors such that vec a+vec b+vec c=vec 0, then prove that vec a xxvec b=vec b xxvec c=vec c xxvec a