Home
Class 11
PHYSICS
The value of lamda so that the unit vect...

The value of `lamda` so that the unit vectors `(2hat(i) + lamda hat(j) + hat(k))/(sqrt(5+ lamda^(2))) and (hat(i) - 2hat(j) + 3hat(k))/(sqrt14)` are orthogonal is

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of `lambda` such that the given unit vectors are orthogonal, we will follow these steps: ### Step 1: Define the Unit Vectors The two unit vectors given are: 1. \( \mathbf{A} = \frac{2\hat{i} + \lambda \hat{j} + \hat{k}}{\sqrt{5 + \lambda^2}} \) 2. \( \mathbf{B} = \frac{\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{14}} \) ### Step 2: Use the Orthogonality Condition Two vectors are orthogonal if their dot product is zero. Therefore, we need to compute the dot product \( \mathbf{A} \cdot \mathbf{B} \) and set it to zero: \[ \mathbf{A} \cdot \mathbf{B} = 0 \] ### Step 3: Calculate the Dot Product The dot product is given by: \[ \mathbf{A} \cdot \mathbf{B} = \left(\frac{2\hat{i} + \lambda \hat{j} + \hat{k}}{\sqrt{5 + \lambda^2}}\right) \cdot \left(\frac{\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{14}}\right) \] Calculating the dot product: \[ \mathbf{A} \cdot \mathbf{B} = \frac{1}{\sqrt{5 + \lambda^2} \cdot \sqrt{14}} \left( 2 \cdot 1 + \lambda \cdot (-2) + 1 \cdot 3 \right) \] This simplifies to: \[ \mathbf{A} \cdot \mathbf{B} = \frac{1}{\sqrt{5 + \lambda^2} \cdot \sqrt{14}} (2 - 2\lambda + 3) = \frac{5 - 2\lambda}{\sqrt{5 + \lambda^2} \cdot \sqrt{14}} \] ### Step 4: Set the Dot Product to Zero For the vectors to be orthogonal: \[ \frac{5 - 2\lambda}{\sqrt{5 + \lambda^2} \cdot \sqrt{14}} = 0 \] This implies: \[ 5 - 2\lambda = 0 \] ### Step 5: Solve for `lambda` Rearranging gives: \[ 2\lambda = 5 \implies \lambda = \frac{5}{2} = 2.5 \] ### Conclusion The value of `lambda` so that the unit vectors are orthogonal is: \[ \lambda = 2.5 \] ---

To find the value of `lambda` such that the given unit vectors are orthogonal, we will follow these steps: ### Step 1: Define the Unit Vectors The two unit vectors given are: 1. \( \mathbf{A} = \frac{2\hat{i} + \lambda \hat{j} + \hat{k}}{\sqrt{5 + \lambda^2}} \) 2. \( \mathbf{B} = \frac{\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{14}} \) ### Step 2: Use the Orthogonality Condition ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of lamda such that the vectors vec(a)=2hat(i)+lamda hat(j)+hat(k) and vec(b)=hat(i)+2hat(j)+3hat(k) are orthogonal.

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

The value of 'lambda' such that the vectors : 3hat(i)+lambdahat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar is __________.

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

The value of lamda for which the vectors 3hat(i)-6hat(j)+hat(k) and 2hat(i)-4hat(j)+lamda hat(k) are parallel is

What is the value of lamda for which (lamda hat(i) + hat(j)- hat(k)) xx (3 hat(i) -2hat(j) + 4hat(k)) = (2hat(i) - 11 hat(j) - 7hat(k)) ?

What is vector of unit length orthogonal to both the vectors hat(i) + hat(j) + hat(k) and 2hat(i) + 3hat(j) - hat(k) ?

For what value of lamda are the vectors lamda hat(i)+ (1+ lamda) hat(j) + (1+ 2lamda) hat(k) and (1- lamda) hat(i) + hat(lamda) hat(j) + 2hat(k) perpendicular?

The vectors lamdahat(i)+hat(j)+2hat(k),hat(i)+lamdahat(j)-hat(k) and 2hat(i)-hat(j)+lamda hat(k) are coplanar, if