Home
Class 11
PHYSICS
Find the angle between the two vectors v...

Find the angle between the two vectors `vec(a)= 2hat(i) + 3hat(j)- 4hat(k) , vec(b)= 4hat(i)+5hat(j)- 2hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the two vectors \(\vec{a} = 2\hat{i} + 3\hat{j} - 4\hat{k}\) and \(\vec{b} = 4\hat{i} + 5\hat{j} - 2\hat{k}\), we can use the formula: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] where \(\theta\) is the angle between the vectors. ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product of two vectors \(\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) and \(\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}\) is given by: \[ \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 \] Substituting the values from the vectors: \[ \vec{a} \cdot \vec{b} = (2)(4) + (3)(5) + (-4)(-2) \] Calculating each term: \[ = 8 + 15 + 8 = 31 \] ### Step 2: Calculate the magnitudes of \(\vec{a}\) and \(\vec{b}\) The magnitude of a vector \(\vec{v} = v_1\hat{i} + v_2\hat{j} + v_3\hat{k}\) is given by: \[ |\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} \] Calculating the magnitude of \(\vec{a}\): \[ |\vec{a}| = \sqrt{2^2 + 3^2 + (-4)^2} = \sqrt{4 + 9 + 16} = \sqrt{29} \] Calculating the magnitude of \(\vec{b}\): \[ |\vec{b}| = \sqrt{4^2 + 5^2 + (-2)^2} = \sqrt{16 + 25 + 4} = \sqrt{45} \] ### Step 3: Substitute values into the cosine formula Now we can substitute the values into the cosine formula: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \] Substituting the values we calculated: \[ \cos \theta = \frac{31}{\sqrt{29} \cdot \sqrt{45}} \] Calculating the denominator: \[ \sqrt{29} \cdot \sqrt{45} = \sqrt{29 \cdot 45} = \sqrt{1305} \] Thus, \[ \cos \theta = \frac{31}{\sqrt{1305}} \] ### Step 4: Calculate \(\theta\) To find \(\theta\), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{31}{\sqrt{1305}}\right) \] ### Final Result Using a calculator to find the angle: \[ \theta \approx \cos^{-1}(0.858) \approx 31.8^\circ \]

To find the angle between the two vectors \(\vec{a} = 2\hat{i} + 3\hat{j} - 4\hat{k}\) and \(\vec{b} = 4\hat{i} + 5\hat{j} - 2\hat{k}\), we can use the formula: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] where \(\theta\) is the angle between the vectors. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

The angle between the two Vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)-5hat(k) will be

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

The angle between two vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)+5hat(k) is

The angle between the two vectors, (vec(A)=3hat(i)+4hatj+5hat(k)) and (vec(B)=3hat(i)+4hat(j)-5hat(k)) will be

If 'theta' is the angle between the vectors : vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) , find sin theta .

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)(hat(i)-2hat(j)+3hat(k)) .