Home
Class 11
PHYSICS
An earth satellite of mass m revolves in...

An earth satellite of mass `m` revolves in a circular orbit at a height `h` from the surface of the earth. R is the radius of the earth and `g` is acceleration due to gravity at the surface of the earth. The velocity of the satellite in the orbit is given by

A

`(gR^2)/(R+h)`

B

`gR`

C

`(gR)/(R+h)`

D

`sqrt((gR^2)/(R+h))`

Text Solution

Verified by Experts

The correct Answer is:
D

`v_0=sqrt((GM)/r)=sqrt((GM)/((R+h)))=sqrt((GM)/(R^2).(R^2)/(R+h))=sqrt((gR^2)/((R+h)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

A satellite is in a circular orbit round the earth at an altitude R above the earth's surface, where R is the radius of the earth. If g is the acceleration due to gravity on the surface of the earth, the speed of the satellite is

An artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of escape velocity from the surface of earth. R is the radius of earth and g is acceleration due to gravity at the surface of earth. (R=6400 km). The time period of revolution of satellite in the given orbit is

What will be the acceleration due to gravity at height h if h gt gt R . Where R is radius of earth and g is acceleration due to gravity on the surface of earth

A satelite is revolving in a circular orbit at a height h above the surface of the earth of radius R. The speed of the satellite in its orbit is one-fourth the escape velocity from the surface of the earth. The relation between h and R is

An artificial satellite is moving in circular orbit around the earth with speed equal to half the magnitude of escape velocity from the surface of earth. R is the radius of earth and g is acceleration due to gravity at the surface of earth (R = 6400km) Then the distance of satelite from the surface of earth is .

The satellite is moving round the earth (radius of earth = R) at a distance r from the centre of the earth. If g is the acceleration due to gravity on the surface of the earth. The acceleration of the satellite will be

A satellite of mass m revolves around the earth of radius R at a hight x from its surface. If g is the acceleration due to gravity on the surface of the earth, the orbital speed of the satellite is