Home
Class 12
MATHS
(tan^-1x)^3+(cot^-1x)^3=k pi^3 then find...

`(tan^-1x)^3+(cot^-1x)^3=k pi^3` then find the range of k

A

`(1/32,9/8)`

B

`[1/32,7/8)`

C

`[1/32,9/8]`

D

`[1/32,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\tan^{-1} x)^3 + (\cot^{-1} x)^3 = k \pi^3\) and find the range of \(k\), we can follow these steps: ### Step 1: Use the identity for \(\tan^{-1} x\) and \(\cot^{-1} x\) We know that: \[ \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \] Let \(a = \tan^{-1} x\) and \(b = \cot^{-1} x\). Then we have: \[ a + b = \frac{\pi}{2} \] ### Step 2: Apply the sum of cubes formula Using the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] we can rewrite our equation as: \[ a^3 + b^3 = \left(\frac{\pi}{2}\right) \left(a^2 - ab + b^2\right) \] ### Step 3: Express \(a^2 - ab + b^2\) We can express \(a^2 + b^2\) in terms of \(a + b\) and \(ab\): \[ a^2 + b^2 = (a + b)^2 - 2ab = \left(\frac{\pi}{2}\right)^2 - 2ab \] Thus, \[ a^2 - ab + b^2 = a^2 + b^2 - ab = \left(\frac{\pi^2}{4} - 2ab\right) - ab = \frac{\pi^2}{4} - 3ab \] ### Step 4: Substitute back into the equation Now substituting back into our equation: \[ a^3 + b^3 = \frac{\pi}{2} \left(\frac{\pi^2}{4} - 3ab\right) \] This gives: \[ a^3 + b^3 = \frac{\pi^3}{8} - \frac{3\pi}{2} ab \] ### Step 5: Set the equation equal to \(k \pi^3\) We set this equal to \(k \pi^3\): \[ \frac{\pi^3}{8} - \frac{3\pi}{2} ab = k \pi^3 \] Dividing through by \(\pi^3\) (assuming \(\pi \neq 0\)): \[ \frac{1}{8} - \frac{3}{2\pi^2} ab = k \] ### Step 6: Determine the range of \(ab\) Now, we need to find the range of \(ab\). Since \(a = \tan^{-1} x\) and \(b = \cot^{-1} x\), we have: \[ ab = \tan^{-1} x \cdot \cot^{-1} x \] The maximum value of \(ab\) occurs when \(x = 1\): \[ \tan^{-1}(1) = \frac{\pi}{4}, \quad \cot^{-1}(1) = \frac{\pi}{4} \implies ab = \left(\frac{\pi}{4}\right)^2 = \frac{\pi^2}{16} \] The minimum value of \(ab\) occurs as \(x\) approaches 0 or \(\infty\), where \(ab\) approaches 0. ### Step 7: Substitute the bounds of \(ab\) into the equation for \(k\) Substituting \(ab = 0\) into the equation for \(k\): \[ k_{\text{min}} = \frac{1}{8} - 0 = \frac{1}{8} \] Substituting \(ab = \frac{\pi^2}{16}\): \[ k_{\text{max}} = \frac{1}{8} - \frac{3}{2\pi^2} \cdot \frac{\pi^2}{16} = \frac{1}{8} - \frac{3}{32} = \frac{4}{32} - \frac{3}{32} = \frac{1}{32} \] ### Final Step: Determine the range of \(k\) Thus, the range of \(k\) is: \[ \frac{1}{32} < k < \frac{1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

3tan^(-1)x+cot^(-1)x=pi

If tan^(-1)(-sqrt(3))+cot^(-1)x=pi , then the value of x is :

If A=tan^(-1)((x sqrt(3))/(2k-x)) and B=tan^(-1)((2x-k)/(k sqrt(3))) then find the value of A-B(A)0^(@)(B)30^(@)(C)60^(@)(D)45^(@)

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

If tan^(-1)(sqrt(3))+cot^(-1)x=(pi)/(2), then find x

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If tan^(-1)x+2cot^(-1)x=(2 pi)/(3), then x, is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3)(d)sqrt(2)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. The coefficent of x^20 in (1+x)(1+2x)(1+4x)(1+8x) . . . (1+2^20x) is

    Text Solution

    |

  2. A circle of equation x^2+y^2+ax+by+c=0 passes through (0,6) and touche...

    Text Solution

    |

  3. (tan^-1x)^3+(cot^-1x)^3=k pi^3 then find the range of k

    Text Solution

    |

  4. S={theta:theta in [-pi,pi]-{+-pi/2} & sin thetatan theta +tan theta = ...

    Text Solution

    |

  5. IF f(theta)= sin theta + int(-pi/2)^(pi/2) (sin theta+t cos theta)*f(t...

    Text Solution

    |

  6. lt ai gt sequence is an A.P. with common difference 1 and sum(i=1)^n a...

    Text Solution

    |

  7. If A=[(1,0,a),(1,1,0),(-1,0,1)] where a in N from 1 to 50 and sum(a=1)...

    Text Solution

    |

  8. A tangent a x - mu y=2 to hyperbola (a^4 x^2)/lamda^2 -(b^2y^2)/1=4 , ...

    Text Solution

    |

  9. A tangent (x1,y1) to the curve y=x^3+2x^2+4 and passes through origin ...

    Text Solution

    |

  10. Find the domain of cos^-1((x^2-5x+6)/(x^2-9))/lnx^2

    Text Solution

    |

  11. Solution of the differential equation x dy/dx =2y is

    Text Solution

    |

  12. 81^(sin ^2x)+81^(cos ^2x)=30 , then find the number of solution in [0,...

    Text Solution

    |

  13. Angle between vector veca and vecc is pi/6, abs(veca)=abs(vecb)=1 , ve...

    Text Solution

    |

  14. Image of A (3/sqrta,sqrta) in y-axis is B & image of B in x-axis is C....

    Text Solution

    |

  15. For a binomial probability distribution (33,p) such that 3P(x=0)=P(X=1...

    Text Solution

    |

  16. If S={z in c: 1 le abs(z-(1+i)) le 2} and A={z in s: abs(z-(1-i))=1} t...

    Text Solution

    |

  17. If x(y)=x and y dx/dy=2x+y^3(y+1)e^y and x(1)=0 then x(e) is equal to

    Text Solution

    |

  18. A ballon , spherical in shape is inflated and its surface area is incr...

    Text Solution

    |

  19. If f(x)=abs(2x^2+3x-2) +sinx cosx , x in [0,1], then the sum of absolu...

    Text Solution

    |

  20. How many seven digit number can be formed by digit 1,2,3,4,5,6,9 such ...

    Text Solution

    |