Home
Class 12
MATHS
If f(x)=abs(2x^2+3x-2) +sinx cosx , x in...

If `f(x)=abs(2x^2+3x-2) +sinx cosx , x in [0,1]`, then the sum of absolute maxima and absolute minima is

A

`3+1/2(sin 2+sin1)`

B

`3-1/2(sin 2+sin1)`

C

`3-1/2(sin 2-sin1)`

D

`3+1/2(sin 2-sin1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = |2x^2 + 3x - 2| + \sin x \cos x \) over the interval \( [0, 1] \). ### Step 1: Determine the critical points of the polynomial inside the absolute value. First, we need to find the roots of the quadratic equation \( 2x^2 + 3x - 2 = 0 \). Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 2, b = 3, c = -2 \): \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4} \] Calculating the roots: \[ x_1 = \frac{2}{4} = \frac{1}{2}, \quad x_2 = \frac{-8}{4} = -2 \] Only \( x_1 = \frac{1}{2} \) lies within the interval \( [0, 1] \). ### Step 2: Evaluate \( f(x) \) at the critical point and endpoints. Now we need to evaluate \( f(x) \) at the endpoints \( x = 0 \) and \( x = 1 \), and at the critical point \( x = \frac{1}{2} \). 1. **At \( x = 0 \)**: \[ f(0) = |2(0)^2 + 3(0) - 2| + \sin(0) \cos(0) = | -2 | + 0 = 2 \] 2. **At \( x = 1 \)**: \[ f(1) = |2(1)^2 + 3(1) - 2| + \sin(1) \cos(1) = |2 + 3 - 2| + \sin(1) \cos(1) = |3| + \frac{1}{2} \sin(2) = 3 + \frac{1}{2} \sin(2) \] 3. **At \( x = \frac{1}{2} \)**: \[ f\left(\frac{1}{2}\right) = |2\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right) - 2| + \sin\left(\frac{1}{2}\right) \cos\left(\frac{1}{2}\right) \] \[ = |2 \cdot \frac{1}{4} + \frac{3}{2} - 2| + \sin\left(\frac{1}{2}\right) \cos\left(\frac{1}{2}\right) \] \[ = | \frac{1}{2} + \frac{3}{2} - 2 | + \frac{1}{2} \sin(1) = |0| + \frac{1}{2} \sin(1) = \frac{1}{2} \sin(1) \] ### Step 3: Compare the values. Now we have: - \( f(0) = 2 \) - \( f(1) = 3 + \frac{1}{2} \sin(2) \) - \( f\left(\frac{1}{2}\right) = \frac{1}{2} \sin(1) \) To find the absolute maximum and minimum, we need to compare these values. ### Step 4: Determine the maximum and minimum values. 1. **Minimum**: Compare \( 2 \) and \( \frac{1}{2} \sin(1) \). Since \( \sin(1) \) is approximately \( 0.8415 \), we have: \[ \frac{1}{2} \sin(1) \approx 0.42075 < 2 \] Thus, the minimum value is \( \frac{1}{2} \sin(1) \). 2. **Maximum**: Compare \( 3 + \frac{1}{2} \sin(2) \) with \( 2 \). Since \( \sin(2) \) is approximately \( 0.9093 \): \[ 3 + \frac{1}{2} \sin(2) \approx 3 + 0.45465 = 3.45465 > 2 \] Thus, the maximum value is \( 3 + \frac{1}{2} \sin(2) \). ### Step 5: Calculate the sum of absolute maxima and minima. Now we can calculate the sum: \[ \text{Sum} = \text{Maximum} + \text{Minimum} = \left(3 + \frac{1}{2} \sin(2)\right) + \left(\frac{1}{2} \sin(1)\right) \] ### Final Answer: The sum of the absolute maxima and absolute minima is: \[ 3 + \frac{1}{2} \sin(2) + \frac{1}{2} \sin(1) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

f(x)={c^x ,0lt=x1 2-c^(x-1),1

Find the absolute maximum and absolute minimum values of f(x)=(x-1)^(2)+3 in [-3,1]

f(x) = (4x^3-3x^2)/6 -2Sinx +(2x-1)Cosx , then f(x) is

Find the point of maxima and minima f(x)=x ln^(2)x,x>0

Find the absolute maximum and absolute minimum value of f(x) =(x-2) sqrt(x-1) in [1,9]

The absolute maximum of y=x^(3)-3x+2 in 0<=x<=2 is

Find the absolute maximum and absolute minimum values of f(x)=4x-(x^(2))/(2) in [-2,4.5]

f(x)=x^3-3x^2-3/2f''(2)+f''(1) is double differenciation function then find the sum of all minimas

Examine the function f(x)=x^(3)-9x^(2)+24x for maxima and minima.

Let f(x)=[(sin^2x,sinx,1),(sinx,1,sin^2x),(1,sin^2x,sinx)] and g(x)=[(cos^2x,cosx,1),(cosx,1,cos^2x),(1,cos^2x,cosx)]. If h(x)=Tr.(f(x)g(x)), then find the absolute value of the difference between maximum and minimum value of h(x). [Tr. (P) denotes the trace of Matrix P]

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. If x(y)=x and y dx/dy=2x+y^3(y+1)e^y and x(1)=0 then x(e) is equal to

    Text Solution

    |

  2. A ballon , spherical in shape is inflated and its surface area is incr...

    Text Solution

    |

  3. If f(x)=abs(2x^2+3x-2) +sinx cosx , x in [0,1], then the sum of absolu...

    Text Solution

    |

  4. How many seven digit number can be formed by digit 1,2,3,4,5,6,9 such ...

    Text Solution

    |

  5. cos(x+pi/3)cos(x-pi/3)=1/4 cos^2(2x) then find the number of solution ...

    Text Solution

    |

  6. p(x)=x^7-2x+3 then find the real roots of the equation p(x)

    Text Solution

    |

  7. 1+3+3^2+ . . . +3^(2021) is divided by 50 then what will be remainder ...

    Text Solution

    |

  8. The circle (x-h)^2+(y-k)^2=r^2 toches x-axis at (1,0) "where" k gt 0 ,...

    Text Solution

    |

  9. Find the value of x when log(x+1) (x^2-x+6)^2=4 and x ne -1

    Text Solution

    |

  10. If the given equation is unique solution x+y+alpha z=1 x+y+3z=2 x+2z=4...

    Text Solution

    |

  11. Find the minimum value of 3x+4y when x^3 y^2=2^15

    Text Solution

    |

  12. Find the value of I when I=int(-pi/2)^(pi/2) dx/((1+e^x)(sin^6x+cos^6x...

    Text Solution

    |

  13. If the probability distribution of P(X) is as such {(X,0,1,2,3,4),(P(...

    Text Solution

    |

  14. Let a triangle of maximum area be inscribed in the ellipse x^2/a^2+y^2...

    Text Solution

    |

  15. Find the sum roots of (e^(2x)-4)(6e^(2x)-5e^x+1)=0

    Text Solution

    |

  16. Solve for lim(n to oo) sum(r=1)^n n^2/((n^2+r^2)(n+r))=

    Text Solution

    |

  17. If Deltar=abs((2^(r-1),((r+1)!)/(1+1/r),4r^3-2nr),(a,b,c),(2^n-1,((n+1...

    Text Solution

    |

  18. Find the area lie between two curves y^2=2x and x+y=4

    Text Solution

    |

  19. If S is given as {S: 1,2,3,4, . . . 100} then find the sum of value of...

    Text Solution

    |

  20. If it is given that x^asty=x^2-y^3. Now if (x^ast1)^ast1 and 1^ast(x^a...

    Text Solution

    |