Home
Class 12
MATHS
cos(x+pi/3)cos(x-pi/3)=1/4 cos^2(2x) the...

`cos(x+pi/3)cos(x-pi/3)=1/4 cos^2(2x)` then find the number of solution in `[-3pi,3pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(x + \frac{\pi}{3}) \cos(x - \frac{\pi}{3}) = \frac{1}{4} \cos^2(2x) \) and find the number of solutions in the interval \([-3\pi, 3\pi]\), we will follow these steps: ### Step 1: Use the product-to-sum identities We can simplify the left side using the product-to-sum formula: \[ \cos A \cos B = \frac{1}{2} (\cos(A + B) + \cos(A - B)) \] Let \( A = x + \frac{\pi}{3} \) and \( B = x - \frac{\pi}{3} \). Then: \[ \cos(x + \frac{\pi}{3}) \cos(x - \frac{\pi}{3}) = \frac{1}{2} \left( \cos(2x) + \cos\left(\frac{2\pi}{3}\right) \right) \] Since \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \), we have: \[ \cos(x + \frac{\pi}{3}) \cos(x - \frac{\pi}{3}) = \frac{1}{2} \left( \cos(2x) - \frac{1}{2} \right) \] Thus: \[ \cos(x + \frac{\pi}{3}) \cos(x - \frac{\pi}{3}) = \frac{1}{2} \cos(2x) - \frac{1}{4} \] ### Step 2: Set up the equation Now we can rewrite the original equation: \[ \frac{1}{2} \cos(2x) - \frac{1}{4} = \frac{1}{4} \cos^2(2x) \] Multiply through by 4 to eliminate the fractions: \[ 2 \cos(2x) - 1 = \cos^2(2x) \] ### Step 3: Rearrange the equation Rearranging gives us: \[ \cos^2(2x) - 2 \cos(2x) + 1 = 0 \] This can be factored as: \[ (\cos(2x) - 1)^2 = 0 \] Thus: \[ \cos(2x) - 1 = 0 \implies \cos(2x) = 1 \] ### Step 4: Solve for \( x \) The general solution for \( \cos(2x) = 1 \) is: \[ 2x = 2n\pi \implies x = n\pi \] where \( n \) is any integer. ### Step 5: Find the values of \( n \) Now we need to find the integer values of \( n \) such that \( x \) lies in the interval \([-3\pi, 3\pi]\): \[ -3\pi \leq n\pi \leq 3\pi \] Dividing through by \( \pi \): \[ -3 \leq n \leq 3 \] The integer values of \( n \) that satisfy this inequality are: \[ n = -3, -2, -1, 0, 1, 2, 3 \] ### Step 6: Count the solutions Counting these values, we have: - \( n = -3 \) gives \( x = -3\pi \) - \( n = -2 \) gives \( x = -2\pi \) - \( n = -1 \) gives \( x = -\pi \) - \( n = 0 \) gives \( x = 0 \) - \( n = 1 \) gives \( x = \pi \) - \( n = 2 \) gives \( x = 2\pi \) - \( n = 3 \) gives \( x = 3\pi \) This gives us a total of **7 solutions** in the interval \([-3\pi, 3\pi]\). ### Final Answer The number of solutions in the interval \([-3\pi, 3\pi]\) is **7**.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

cos((3pi)/4+x)-sin(pi/4-x)=?

Find the number of solution of the equation 2x=3pi (1-cos x) .

If cos(x+pi/3)+cos x=a has real solutions, then (a) number of integral values of a are 3 (b) sum of number of integral values of a is 0 (c) when a=1 , number of solutions for x in [0,2pi] are 3 (d) when a=1, number of solutions for x in [0,2pi] are 2

cos^3(x-((2pi)/3))+cos^3x+cos^3(x+((2pi)/3)))=3/4 cos3x

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

If tan x=(3)/(4),pi

sin(pi/3-x)cos(pi/6+x)+cos(pi/3-x)sin(pi/6+x)=1

If 2 cos x lt sqrt(3) and x in [-pi, pi] , then find the solution set for x .

Statement I y = tan^(-1) ( tan x) " and " y = cos^(-1) ( cos x) " does not have nay solution , if " x in (pi/2, (3pi)/2) Statement II y = tan^(-1)( tan x) = x - pi, x in (pi/2, (3pi)/2) " and " y = cos^(-1) ( cos x) = {{:(2pi - x", " x in [pi, (3pi)/2]),(" x, " x in [pi/2,pi]):}

int_(pi//4)^(3pi//4)(dx)/(1+cos x)=

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. If f(x)=abs(2x^2+3x-2) +sinx cosx , x in [0,1], then the sum of absolu...

    Text Solution

    |

  2. How many seven digit number can be formed by digit 1,2,3,4,5,6,9 such ...

    Text Solution

    |

  3. cos(x+pi/3)cos(x-pi/3)=1/4 cos^2(2x) then find the number of solution ...

    Text Solution

    |

  4. p(x)=x^7-2x+3 then find the real roots of the equation p(x)

    Text Solution

    |

  5. 1+3+3^2+ . . . +3^(2021) is divided by 50 then what will be remainder ...

    Text Solution

    |

  6. The circle (x-h)^2+(y-k)^2=r^2 toches x-axis at (1,0) "where" k gt 0 ,...

    Text Solution

    |

  7. Find the value of x when log(x+1) (x^2-x+6)^2=4 and x ne -1

    Text Solution

    |

  8. If the given equation is unique solution x+y+alpha z=1 x+y+3z=2 x+2z=4...

    Text Solution

    |

  9. Find the minimum value of 3x+4y when x^3 y^2=2^15

    Text Solution

    |

  10. Find the value of I when I=int(-pi/2)^(pi/2) dx/((1+e^x)(sin^6x+cos^6x...

    Text Solution

    |

  11. If the probability distribution of P(X) is as such {(X,0,1,2,3,4),(P(...

    Text Solution

    |

  12. Let a triangle of maximum area be inscribed in the ellipse x^2/a^2+y^2...

    Text Solution

    |

  13. Find the sum roots of (e^(2x)-4)(6e^(2x)-5e^x+1)=0

    Text Solution

    |

  14. Solve for lim(n to oo) sum(r=1)^n n^2/((n^2+r^2)(n+r))=

    Text Solution

    |

  15. If Deltar=abs((2^(r-1),((r+1)!)/(1+1/r),4r^3-2nr),(a,b,c),(2^n-1,((n+1...

    Text Solution

    |

  16. Find the area lie between two curves y^2=2x and x+y=4

    Text Solution

    |

  17. If S is given as {S: 1,2,3,4, . . . 100} then find the sum of value of...

    Text Solution

    |

  18. If it is given that x^asty=x^2-y^3. Now if (x^ast1)^ast1 and 1^ast(x^a...

    Text Solution

    |

  19. Given H=x^2/a^2-y^2=1 & E=3x^2+4y^2=12 if the lengths of latus rectum ...

    Text Solution

    |

  20. f(x)={(sin{x}/({x}),x in (-2,-1)) ,(max([abs(x)],2x), absx lt1),(1,oth...

    Text Solution

    |