Home
Class 12
MATHS
If f(x)={(2(1-x/2))^25(2+x)^25}^(1/50) a...

If `f(x)={(2(1-x/2))^25(2+x)^25}^(1/50)` and `g(x)=f(f(f(x)))+f(f(x))` then find `[g(1)]` (where [x] is Greatest integer less than or equal to x)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( g(x) = f(f(f(x))) + f(f(x)) \) at \( x = 1 \). Let's break this down step by step. ### Step 1: Calculate \( f(1) \) The function \( f(x) \) is defined as: \[ f(x) = \left( (2(1 - \frac{x}{2}))^{25} (2 + x)^{25} \right)^{\frac{1}{50}} \] Substituting \( x = 1 \): \[ f(1) = \left( (2(1 - \frac{1}{2}))^{25} (2 + 1)^{25} \right)^{\frac{1}{50}} \] Calculating the terms: \[ 1 - \frac{1}{2} = \frac{1}{2} \quad \text{and} \quad 2 + 1 = 3 \] Thus, \[ f(1) = \left( (2 \cdot \frac{1}{2})^{25} \cdot 3^{25} \right)^{\frac{1}{50}} = \left( 1^{25} \cdot 3^{25} \right)^{\frac{1}{50}} = \left( 3^{25} \right)^{\frac{1}{50}} = 3^{\frac{25}{50}} = 3^{\frac{1}{2}} = \sqrt{3} \] ### Step 2: Calculate \( f(f(1)) = f(\sqrt{3}) \) Now, we need to find \( f(\sqrt{3}) \): \[ f(\sqrt{3}) = \left( (2(1 - \frac{\sqrt{3}}{2}))^{25} (2 + \sqrt{3})^{25} \right)^{\frac{1}{50}} \] Calculating the terms: \[ 1 - \frac{\sqrt{3}}{2} = \frac{2 - \sqrt{3}}{2} \quad \text{and} \quad 2 + \sqrt{3} \] Thus, \[ f(\sqrt{3}) = \left( \left( 2 \cdot \frac{2 - \sqrt{3}}{2} \right)^{25} (2 + \sqrt{3})^{25} \right)^{\frac{1}{50}} = \left( (2 - \sqrt{3})^{25} (2 + \sqrt{3})^{25} \right)^{\frac{1}{50}} \] Using the identity \( (a-b)(a+b) = a^2 - b^2 \): \[ (2 - \sqrt{3})(2 + \sqrt{3}) = 4 - 3 = 1 \] Thus, \[ f(\sqrt{3}) = \left( 1^{25} \right)^{\frac{1}{50}} = 1 \] ### Step 3: Calculate \( f(f(f(1))) = f(f(\sqrt{3})) = f(1) \) Since we found \( f(\sqrt{3}) = 1 \): \[ f(f(\sqrt{3})) = f(1) = \sqrt{3} \] ### Step 4: Calculate \( g(1) \) Now we can calculate \( g(1) \): \[ g(1) = f(f(f(1))) + f(f(1)) = f(1) + f(\sqrt{3}) = \sqrt{3} + 1 \] ### Step 5: Find the greatest integer less than or equal to \( g(1) \) We know: \[ \sqrt{3} \approx 1.732 \] Thus, \[ g(1) \approx 1.732 + 1 = 2.732 \] Taking the greatest integer less than or equal to \( g(1) \): \[ [g(1)] = 2 \] ### Final Answer The final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|-[x] (where [x] is greatest integer less than or equal to x ) then.

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

Let f(x)=[x^(2)+1],([x] is the greatest integer less than or equal to x) . Ther

Let f(x)=(x)/(1+x^(2)) and g(x)=(e^(-x))/(1+[x]) where [x] is the greatest integer less than or equal to x. Then

Let f(x)=(x-[x])/(1+x-[x]), where [x] denotes the greatest integer less than or equal to x,then the range of f is

f(x)=abs([x]x) -1lexle2 , then f(x) is (where [ast] denotes greatest integer lex )

If f^(2)(x)*f((1-x)/(1+x))=x^(3),[x!=-1,1 and f(x)!=0] then find |[f(-2)]| (where [] is the greatest integer function).

If f(x)=|x-1| and g(x)=f(f(f(x))) then for x>2,g'(x)=

f(x)=|x[x]| in -1<=x<=2 where [x] is greatest integer <=x then f(x) is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. If y=y(x) be the solution of given equation y^2dx+(x^2-xy+y^2)dy=0 and...

    Text Solution

    |

  2. If abs(veca)=3 abs(vecb)=4 and theta lies between pi/3 le theta le pi/...

    Text Solution

    |

  3. If f(x)={(2(1-x/2))^25(2+x)^25}^(1/50) and g(x)=f(f(f(x)))+f(f(x)) the...

    Text Solution

    |

  4. If Q is the mirror image of P(-1,0,-1) with respect to plane x+y+z=5 a...

    Text Solution

    |

  5. Let A=[(0,-2),(2,0)] and M=sum(k=1)^10 A^(2k) , N=sum(k=1)^10 A^(2k-1)...

    Text Solution

    |

  6. Let E1 and E2 be two events such that P(E1/E2)=1/2 , P(E2/E1)=3/4, P(E...

    Text Solution

    |

  7. If the sum of first n terms of two A.P's are in the ratio 3n+8:7n+15 t...

    Text Solution

    |

  8. (.^25C0)^2+(.^25C1)^2+(.^25C2)^2+. . . +(.^25C25)^2=k then find the va...

    Text Solution

    |

  9. The value of tan^-1((cos((15pi)/4)-1)/sin(pi/4)) is equal to

    Text Solution

    |

  10. What will be the coefficient of x^101 in (5+x)^500+x(5+x)^499+x^2(5+x)...

    Text Solution

    |

  11. Find the sum of 1.3+2.3^2+3.3^3+ . . . + 10.3^9

    Text Solution

    |

  12. If there is a biased dice with number "2,4,8,16,32,32" and probability...

    Text Solution

    |

  13. 2 sin 12^@-sin 72^@=?

    Text Solution

    |

  14. y=y(x) is the solution of the differential equation 2x^2dy/dx-2xy+8y^2...

    Text Solution

    |

  15. A={x in R : abs(x+1) lt 2} , B={x in R: abs(x-1) ge 2} then

    Text Solution

    |

  16. If the angle made by tangent at point (x0,y0) on the curve x=12(t+sint...

    Text Solution

    |

  17. The area of region enclosed between the parabolas y^2=2x-1 & y^2=4x-3 ...

    Text Solution

    |

  18. The negation of ((p wedge~q ) implies ((~p) vv q)

    Text Solution

    |

  19. y=x+1 intersect the ellipse x^2/4+y^2/2=1 at the point P and Q. PQ is ...

    Text Solution

    |

  20. Let barz1 and barz2 two complex number show that barz1=ibarz2 and arg(...

    Text Solution

    |