Home
Class 12
MATHS
AB =I , detA=1/8 then find the value of ...

`AB =I , detA=1/8` then find the value of `det(adj(B adj 2A))` when `A` is `3xx3` matrix

A

128

B

32

C

64

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \text{det}(\text{adj}(B \cdot \text{adj}(2A))) \) given that \( AB = I \) and \( \text{det}(A) = \frac{1}{8} \), where \( A \) is a \( 3 \times 3 \) matrix. ### Step-by-Step Solution: 1. **Understanding the properties of determinants**: - We know that if \( A \) is an \( n \times n \) matrix, then: \[ \text{det}(\text{adj}(A)) = \text{det}(A)^{n-1} \] - For a scalar \( k \) and a matrix \( A \): \[ \text{det}(kA) = k^n \cdot \text{det}(A) \] 2. **Finding \( \text{det}(B) \)**: - Since \( AB = I \), we have: \[ \text{det}(A) \cdot \text{det}(B) = \text{det}(I) = 1 \] - Given \( \text{det}(A) = \frac{1}{8} \), we can find \( \text{det}(B) \): \[ \text{det}(B) = \frac{1}{\text{det}(A)} = 8 \] 3. **Finding \( \text{det}(2A) \)**: - Using the property of determinants: \[ \text{det}(2A) = 2^3 \cdot \text{det}(A) = 8 \cdot \frac{1}{8} = 1 \] 4. **Finding \( \text{det}(\text{adj}(2A)) \)**: - Now applying the adjoint property: \[ \text{det}(\text{adj}(2A)) = \text{det}(2A)^{3-1} = \text{det}(2A)^2 = 1^2 = 1 \] 5. **Finding \( \text{det}(B \cdot \text{adj}(2A)) \)**: - We can find \( \text{det}(B \cdot \text{adj}(2A)) \) using the property of determinants: \[ \text{det}(B \cdot \text{adj}(2A)) = \text{det}(B) \cdot \text{det}(\text{adj}(2A)) = 8 \cdot 1 = 8 \] 6. **Finding \( \text{det}(\text{adj}(B \cdot \text{adj}(2A))) \)**: - Finally, we apply the adjoint property again: \[ \text{det}(\text{adj}(B \cdot \text{adj}(2A))) = \text{det}(B \cdot \text{adj}(2A))^{3-1} = \text{det}(B \cdot \text{adj}(2A))^2 = 8^2 = 64 \] ### Final Answer: \[ \text{det}(\text{adj}(B \cdot \text{adj}(2A))) = 64 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

Let B be a skew symmetric matrix of order 3times3 with real entries. Given I-B and I+B are non-singular matrices. If A=(I+B)(I-B)^(-1), where det (A)>0 ,then find the value of det(2A)-det(adj(A)) [Note: det(P) denotes determinant of square matrix P and det(adj (P)) denotes determinant of adjoint of square matrix P respectively.]

Let A be a non singular matrix of order 5 and the det (A)=2. If the value of det(adj(adjA)) is n, then the value of (n)/(1024) is

The value of the determinant of adj(adj(adj(A^(-1)))) where A is a 3x3 matrix and |A|=2 is (A) 1/64 (B) 1/256 (C) 1/128 (D) 1/512

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

Let A be a non singular matrix of order 5 and the det (A)=2 .If the value of det (adj (adjA)) is n,then the value of (n)/(1024) is

If A is a matrix of order 3 and |A|=3, then the value of |adj(adj(A^(-1)))| is

Let A be a square matrix of order 3 whose elements are real numbers and adj.(adj(adj.A))=[[16,0,-3],[0,4,0],[0,3,4]] then find absolute value of Tr(A^(-1)) [Note: adj(P) and Tr(P) denote adjoint matrix and trace of matrix P respectively]

A is a matrix of 3times3 ,where A=([1,2,3],[2,3,4],[4,5,8]) then the value of |(adj(adj(adj(adj A)))| is equal to 2^( k) ,the value of k-9 is

Let A be a squarre matrix of order of order 3 satisfies the matrix equation A^(3) -6 A ^(2) + 7 A - 8 I = O and B = A- 2 I . Also, det A = 8. The value of det (adj(I-2A^(-1))) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. alpha = sin 36^@ is root of which of the following equation

    Text Solution

    |

  2. Mean and Variance of 4 , 5 , 6 , 6 , 7 , 8 , x , y is 6 and 9/4 then f...

    Text Solution

    |

  3. AB =I , detA=1/8 then find the value of det(adj(B adj 2A)) when A is 3...

    Text Solution

    |

  4. (tan^-1 y-x)dy = (1+y^2)dx is the differential equation at (1,0) then ...

    Text Solution

    |

  5. If a1 , a2 , a3 . . . and b1 , b2 ,b3 ... are two A.P. and a1=2 , a(10...

    Text Solution

    |

  6. f(x)=int0^(x^2)(t^2-5t+4)/(2+e^t)dt Find the number of points of local...

    Text Solution

    |

  7. If f is differentiable function such that intcos x^1 t^2 f(t) dt =sin^...

    Text Solution

    |

  8. The equation of the parabola whose vertex is (5,4) and equation of dir...

    Text Solution

    |

  9. The shortest distance between the line (x-1)/4=(y-2)/2=(z-3)/3 & (x-5)...

    Text Solution

    |

  10. For some alpha , beta in R , a = alpha- i beta. If system of equations...

    Text Solution

    |

  11. Let foot of perpendicular from point (1,2,4) on line (x+2)/4=(y-1)/2=(...

    Text Solution

    |

  12. If y(x)=(x^x)^(x) , x gt 0 (d^2y)/(dx^2)+20 at x=1

    Text Solution

    |

  13. Let vec a and vec b be two vectors along diagonals of parallelogram ha...

    Text Solution

    |

  14. The value of int0^1 dx/(7^[[1/x]]) is ( where [.] denotes the greatest...

    Text Solution

    |

  15. A matrix 'A' of order 3xx3 and abs(A)=2 , then abs((detA)(adj(adjA))^3...

    Text Solution

    |

  16. Number of real solution of equation 4x^7+3x^3+5x+1=0 are

    Text Solution

    |

  17. Area of region S:y^2 le 8x , y ge sqrt2 , x le 1

    Text Solution

    |

  18. What is the probability of seclecting three digit number with at least...

    Text Solution

    |

  19. Consider 15 observation and their mean was 8 and standard deviation wa...

    Text Solution

    |

  20. How many 5 digit multiples of 6 can be formed using digit {1,2,3,5,6,7...

    Text Solution

    |