Home
Class 12
MATHS
The set of all values of k for which (ta...

The set of all values of k for which `(tan^(-1)x)^3 + (cot^(-1)x)^3 = kpi^3,x in R,` is the interval :

A

`[1/32,7/8)`

B

`(1/24,13/16)`

C

`[1/48,13/16]`

D

`[1/32,9/8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation: \[ (\tan^{-1} x)^3 + (\cot^{-1} x)^3 = k\pi^3 \] where \( x \in \mathbb{R} \). ### Step 1: Use the identity for the sum of cubes We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \tan^{-1} x \) and \( b = \cot^{-1} x \). We know that: \[ \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \] Thus, we can rewrite the equation as: \[ (\tan^{-1} x)^3 + (\cot^{-1} x)^3 = \left(\frac{\pi}{2}\right)\left((\tan^{-1} x)^2 - \tan^{-1} x \cdot \cot^{-1} x + (\cot^{-1} x)^2\right) \] ### Step 2: Substitute and simplify Substituting \( a + b = \frac{\pi}{2} \) into the identity: \[ (\tan^{-1} x)^3 + (\cot^{-1} x)^3 = \left(\frac{\pi}{2}\right)\left((\tan^{-1} x)^2 + (\cot^{-1} x)^2 - \tan^{-1} x \cdot \cot^{-1} x\right) \] ### Step 3: Find \( (\tan^{-1} x)^2 + (\cot^{-1} x)^2 \) Using the identity: \[ (\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \left(\frac{\pi}{2}\right)^2 - 2\tan^{-1} x \cdot \cot^{-1} x \] We can express \( \tan^{-1} x \cdot \cot^{-1} x \) in terms of \( t = \tan^{-1} x \): \[ = t \cdot \left(\frac{\pi}{2} - t\right) \] ### Step 4: Rewrite the expression Now we can express the original equation in terms of \( t \): \[ (\tan^{-1} x)^3 + (\cot^{-1} x)^3 = \frac{\pi}{2}\left(\frac{\pi^2}{4} - 2t\left(\frac{\pi}{2} - t\right)\right) \] ### Step 5: Find the range of \( k \) The expression simplifies to: \[ \frac{\pi^3}{8} - 3t\left(\frac{\pi}{2} - t\right) \] To find the minimum and maximum values of this expression, we can differentiate with respect to \( t \) and find critical points. ### Step 6: Evaluate critical points The critical points occur when \( t = \frac{\pi}{4} \). Evaluating the expression at \( t = \frac{\pi}{4} \): \[ \text{Minimum value} = \frac{\pi^3}{32} \] And for the maximum value when \( t \) approaches \( 0 \) or \( \frac{\pi}{2} \): \[ \text{Maximum value} = \frac{7\pi^3}{8} \] ### Step 7: Set the range for \( k \) Thus, we have: \[ \frac{\pi^3}{32} \leq k\pi^3 \leq \frac{7\pi^3}{8} \] Dividing through by \( \pi^3 \): \[ \frac{1}{32} \leq k \leq \frac{7}{8} \] ### Final Answer The set of all values of \( k \) is: \[ \left[\frac{1}{32}, \frac{7}{8}\right] \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics-Section B|50 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION A)|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x-2))/(x) lt 0

The set of values for which x^(3)+1 ge x^(2)+x is

The set of values of x for which (tan3x-tan2x)/(1+tan3x tan2x)=1 is

The set of values of x satisfying |tan^(-1)x|>=|cot^(-1)x| is

3tan^(-1)x+cot^(-1)x=pi

The set of values of k for which roots of the equation x^(2) - 3x + k = 0 lie in the interval (0, 2), is