Home
Class 12
MATHS
Let S = { sqrtn :1 len le 50 and n is od...

Let S = { `sqrtn :1 len le 50` and n is odd}.
Let a `in` S and A `A=[(1,0,a),(-1,1,0),(-a,0,1)]`
If `sum_(a inS)` de (adj A) `= 100lamda` then is equal to :

A

218

B

221

C

663

D

1717

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript and derive the required value of \( \lambda \). ### Step 1: Define the Set \( S \) The set \( S \) is defined as: \[ S = \{ \sqrt{n} : 1 \leq n \leq 50 \text{ and } n \text{ is odd} \} \] The odd integers from 1 to 50 are: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49. Thus, the elements of \( S \) are: \[ S = \{ \sqrt{1}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{9}, \sqrt{11}, \sqrt{13}, \sqrt{15}, \sqrt{17}, \sqrt{19}, \sqrt{21}, \sqrt{23}, \sqrt{25}, \sqrt{27}, \sqrt{29}, \sqrt{31}, \sqrt{33}, \sqrt{35}, \sqrt{37}, \sqrt{39}, \sqrt{41}, \sqrt{43}, \sqrt{45}, \sqrt{47}, \sqrt{49} \} \] ### Step 2: Calculate the Determinant of Matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1 \end{pmatrix} \] To find the determinant \( \text{det}(A) \), we use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = 1 \cdot (1 \cdot 1 - 0 \cdot 0) - 0 \cdot (-1 \cdot 1 - 0 \cdot (-a)) + a \cdot (-1 \cdot 0 - 1 \cdot (-a)) \] Calculating this gives: \[ \text{det}(A) = 1 - 0 + a^2 = 1 + a^2 \] ### Step 3: Calculate the Adjoint of Matrix \( A \) The adjoint of a matrix \( A \) can be expressed in terms of its determinant: \[ \text{adj}(A) = \text{det}(A) \cdot A^{-1} \] However, we are interested in \( \text{det}(\text{adj}(A)) \). The determinant of the adjoint of a matrix is given by: \[ \text{det}(\text{adj}(A)) = (\text{det}(A))^{n-1} \] where \( n \) is the order of the matrix. Here, \( n = 3 \), so: \[ \text{det}(\text{adj}(A)) = (1 + a^2)^{3-1} = (1 + a^2)^2 \] ### Step 4: Sum Over All Elements in \( S \) Now we need to sum \( \text{det}(\text{adj}(A)) \) over all \( a \in S \): \[ \sum_{a \in S} \text{det}(\text{adj}(A)) = \sum_{a \in S} (1 + a^2)^2 \] Calculating \( (1 + a^2)^2 \): \[ (1 + a^2)^2 = 1 + 2a^2 + a^4 \] Thus, we need to calculate: \[ \sum_{a \in S} (1 + 2a^2 + a^4) = \sum_{a \in S} 1 + 2\sum_{a \in S} a^2 + \sum_{a \in S} a^4 \] The number of elements in \( S \) is 25 (since there are 25 odd numbers from 1 to 49), so: \[ \sum_{a \in S} 1 = 25 \] ### Step 5: Calculate \( \sum_{a \in S} a^2 \) and \( \sum_{a \in S} a^4 \) 1. **Calculate \( \sum_{a \in S} a^2 \)**: \[ \sum_{k=1}^{25} (2k-1)^2 = \sum_{k=1}^{25} (4k^2 - 4k + 1) = 4\sum_{k=1}^{25} k^2 - 4\sum_{k=1}^{25} k + 25 \] Using the formulas: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] For \( n = 25 \): \[ \sum_{k=1}^{25} k = \frac{25 \cdot 26}{2} = 325 \] \[ \sum_{k=1}^{25} k^2 = \frac{25 \cdot 26 \cdot 51}{6} = 5525 \] Thus: \[ \sum_{a \in S} a^2 = 4 \cdot 5525 - 4 \cdot 325 + 25 = 22100 - 1300 + 25 = 20825 \] 2. **Calculate \( \sum_{a \in S} a^4 \)**: \[ \sum_{k=1}^{25} (2k-1)^4 = \sum_{k=1}^{25} (16k^4 - 32k^3 + 24k^2 - 8k + 1) \] Using the formulas for \( \sum k^3 \) and \( \sum k^4 \): \[ \sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2 \] For \( n = 25 \): \[ \sum_{k=1}^{25} k^3 = \left( \frac{25 \cdot 26}{2} \right)^2 = 105625 \] Similarly, \( \sum_{k=1}^{25} k^4 \) can be calculated using: \[ \sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30} \] For \( n = 25 \): \[ \sum_{k=1}^{25} k^4 = \frac{25 \cdot 26 \cdot 51 \cdot 197}{30} = 5525 \cdot 197 = 1087975 \] ### Step 6: Final Calculation Putting it all together: \[ \sum_{a \in S} (1 + 2a^2 + a^4) = 25 + 2 \cdot 20825 + 1087975 \] Calculating this gives: \[ = 25 + 41650 + 1087975 = 1124650 \] ### Step 7: Set Equal to \( 100\lambda \) Given that: \[ \sum_{a \in S} \text{det}(\text{adj}(A)) = 100\lambda \] We have: \[ 1124650 = 100\lambda \] Thus: \[ \lambda = \frac{1124650}{100} = 11246.5 \] ### Final Answer \[ \lambda = 11246.5 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics-Section B|50 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION A)|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(5,2,0),(-1,6,1)] , then the adjoint of A is

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

Let A=[(1,0,0),(1,1,0),(1,1,1)] and B=A^20 . Then the sum of the elements of the first column of B is

If A=[(cosx,sinx),(sinx,-cosx)] and A("adj "A)=lamda[(1,0),(0,1)] , then lamda is equal to

Let A=[(-1,2,-3),(-2,0,3),(3,-3,1)] be a matrix, then |A|adj(A^(-1)) is equal to

If A=[(1,0,0),(0,1,0),(3,4,-1)] and A^(n)=l , then value of n is equal to

Let : A={:[(0,0,1),(0,-1,0),(-1,0,0)]:}. Then the only correct sta

Let A=[(-1, 2, -3),(-2,0,3),(3,-3, 1)] be a matrix, then |a| adj(A^(-1)) is equal to

Let A be a matrix such that adj (adj A)= [(5,2,1),(3,1,0),(2,2,1)] then the value of