Home
Class 12
MATHS
The sum of absolute maximum and absolute...

The sum of absolute maximum and absolute minimum values of the function `f (x) = |2x^2 + 3x – 2|` + sinx cosx in the interval [0, 1] is :

A

`3+(sin(1)cos^2(1//2))/2`

B

`3+1/2(1+2cos(1))sin(1)`

C

`5+1/2(sin(1)+sin(2))`

D

`2+sin(1/2)cos(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the absolute maximum and minimum values of the function \( f(x) = |2x^2 + 3x - 2| + \sin x \cos x \) on the interval \([0, 1]\). ### Step 1: Analyze the function inside the absolute value First, we need to analyze the quadratic expression \( 2x^2 + 3x - 2 \) to find its roots, as they will help us determine where the absolute value function changes. The roots can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 2, b = 3, c = -2 \). Calculating the discriminant: \[ D = b^2 - 4ac = 3^2 - 4 \cdot 2 \cdot (-2) = 9 + 16 = 25 \] Thus, the roots are: \[ x = \frac{-3 \pm 5}{4} \] Calculating the roots: \[ x_1 = \frac{2}{4} = \frac{1}{2}, \quad x_2 = \frac{-8}{4} = -2 \] ### Step 2: Determine the intervals The roots indicate that \( 2x^2 + 3x - 2 \) changes sign at \( x = \frac{1}{2} \). We will check the sign of \( 2x^2 + 3x - 2 \) in the intervals \([0, \frac{1}{2})\) and \((\frac{1}{2}, 1]\). - For \( x \in [0, \frac{1}{2}) \): - Choose \( x = 0 \): \( 2(0)^2 + 3(0) - 2 = -2 \) (negative) - For \( x = \frac{1}{2} \): - \( 2(\frac{1}{2})^2 + 3(\frac{1}{2}) - 2 = 0 \) (zero) - For \( x \in (\frac{1}{2}, 1] \): - Choose \( x = 1 \): \( 2(1)^2 + 3(1) - 2 = 3 \) (positive) Thus, we can conclude: - \( 2x^2 + 3x - 2 < 0 \) for \( x \in [0, \frac{1}{2}) \) - \( 2x^2 + 3x - 2 = 0 \) at \( x = \frac{1}{2} \) - \( 2x^2 + 3x - 2 > 0 \) for \( x \in (\frac{1}{2}, 1] \) ### Step 3: Rewrite the function Now we can rewrite the function \( f(x) \): \[ f(x) = \begin{cases} -(2x^2 + 3x - 2) + \sin x \cos x & \text{if } x \in [0, \frac{1}{2}) \\ 0 + \sin x \cos x & \text{if } x = \frac{1}{2} \\ (2x^2 + 3x - 2) + \sin x \cos x & \text{if } x \in (\frac{1}{2}, 1] \end{cases} \] ### Step 4: Find critical points Next, we need to find the critical points of \( f(x) \) by differentiating \( f(x) \) and setting the derivative to zero. 1. For \( x \in [0, \frac{1}{2}) \): \[ f'(x) = - (4x + 3) + \cos(2x) \] 2. For \( x \in (\frac{1}{2}, 1] \): \[ f'(x) = 4x + 3 + \cos(2x) \] ### Step 5: Evaluate at critical points and endpoints We evaluate \( f(x) \) at the endpoints \( x = 0, \frac{1}{2}, 1 \) and any critical points found in the previous step. - At \( x = 0 \): \[ f(0) = |2(0)^2 + 3(0) - 2| + \sin(0)\cos(0) = 2 + 0 = 2 \] - At \( x = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = 0 + \sin\left(\frac{1}{2}\right)\cos\left(\frac{1}{2}\right) = \frac{1}{2}\sin(1) \] - At \( x = 1 \): \[ f(1) = |2(1)^2 + 3(1) - 2| + \sin(1)\cos(1) = 3 + \frac{1}{2}\sin(2) \] ### Step 6: Compare values Now we compare the values: - \( f(0) = 2 \) - \( f\left(\frac{1}{2}\right) = \frac{1}{2}\sin(1) \) - \( f(1) = 3 + \frac{1}{2}\sin(2) \) ### Step 7: Determine maximum and minimum From the evaluations: - The absolute minimum value is \( f\left(\frac{1}{2}\right) \). - The absolute maximum value is \( f(1) \). ### Step 8: Calculate the sum Finally, we find the sum of the absolute maximum and minimum values: \[ \text{Sum} = f(1) + f\left(\frac{1}{2}\right) = \left(3 + \frac{1}{2}\sin(2)\right) + \frac{1}{2}\sin(1) \] ### Final Answer The sum of the absolute maximum and absolute minimum values of the function \( f(x) \) in the interval \([0, 1]\) is: \[ \text{Sum} = 3 + \frac{1}{2}(\sin(2) + \sin(1)) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics-Section B|50 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION A)|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

Find the absolute maximum and absolute minimum vlaues of a function f given by f(x)=2x^(3)-15x^(2)+36x+3 on the interval [0,6] .

Find the absolute maximum and absolute minimum values of f(x)=(x-1)^(2)+3 in [-3,1]

The sum of the maximum and minimum values of the function f(x)=(1)/(1+(2cos x-4sin x)^(2)) is

Determine the maximum and minimum values of the function f(x) = 2x^(3) - 21 x^(2) + 36x-20

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

Find the absolute maximum and absolute minimum vlaues of a function f given by f(x)=2x^(3)-(33x^(2))/(2)+36x+2 on the interval [-1,9] .

Find the absolute maximum and absolute minimum value of f(x) =(x-2) sqrt(x-1) in [1,9]

Find the maximum and minimum values of the function : f(x)=2x^(3)-15x^(2)+36x+11.

Find sum of maximum and minimum values of the function f(x)=sin^(2)x+8cos x-7

Find the absolute maximum and the absolute minimum value of the function given by : f(x)=sin^(2)x-cos x, x in [0, pi].